Câu hỏi:
13/07/2024 660Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải:
+ Phép dời hình cũng là phép đồng dạng với tỉ số k = 1.
Thật vậy, ta chứng minh như sau:
Cho hai điểm M, N bất kì và ảnh M', N' tương ứng của nó qua phép dời hình. Khi đó M'N' = MN (phép dời hình bảo toàn khoảng cách giữa hai điểm bất kì). Do đó, M', N' là ảnh của hai điểm M, N bất kì qua phép đồng dạng tỉ số 1.
+ Phép vị tự với tỉ số k là phép đồng dạng với tỉ số đồng dạng |k|.
Thật vậy, ta chứng minh như sau:
Cho hai điểm M, N bất kì và ảnh M', N' tương ứng của nó qua phép vị tự tỉ số k. Khi đó \(\overrightarrow {M'N'} = k\overrightarrow {MN} \)\( \Rightarrow M'N' = \left| k \right|MN\). Do đó, M', N' là ảnh của hai điểm M, N bất kì qua phép đồng dạng tỉ số |k| (|k| > 0).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng tọa độ Oxy, cho phép biến hình f biến mỗi điểm M(x; y) thành điểm M'(3x; – 3y).
a) Tìm ảnh của các điểm O(0; 0), N(2; 1).
b) Chứng minh rằng f là một phép đồng dạng. Tìm tỉ số đồng dạng.
Câu 2:
Một phép đồng dạng biến ba đỉnh A, B, C của tam giác ABC tương ứng thành A', B', C'. Chứng minh rằng
\[\frac{{BC}}{{B'C'}} = \frac{{CA}}{{C'A'}} = \frac{{AB}}{{A'B'}}\].
Câu 3:
Câu 4:
Câu 5:
Câu 6:
về câu hỏi!