Câu hỏi:
12/07/2024 2,167Trong mặt phẳng tọa độ Oxy, cho phép biến hình f biến mỗi điểm M(x; y) thành điểm M'(3x; – 3y).
a) Tìm ảnh của các điểm O(0; 0), N(2; 1).
b) Chứng minh rằng f là một phép đồng dạng. Tìm tỉ số đồng dạng.
Câu hỏi trong đề: Chuyên đề Toán 11 KNTT Bài 7. Phép đồng dạng có đáp án !!
Quảng cáo
Trả lời:
Lời giải:
a) Ảnh của điểm O(0; 0) qua phép biến hình f là O'(3 . 0; – 3 . 0) ≡ O(0; 0).
Ảnh của điểm N(2; 1) qua phép biến hình f là N'(3 . 2; – 3 . 1) = N'(6; – 3).
b) Chọn hai điểm M(x; y), N(z; t) bất kì. Gọi M', N' tương ứng là ảnh của M, N qua phép biến hình f. Khi đó M'(3x; – 3y), N'(3z; – 3t).
Ta có: MN = \(\sqrt {{{\left( {z - x} \right)}^2} + {{\left( {t - y} \right)}^2}} \)
M'N' = \(\sqrt {{{\left( {3z - 3x} \right)}^2} + {{\left( { - 3t - \left( { - 3y} \right)} \right)}^2}} \)\( = \sqrt {9{{\left( {z - x} \right)}^2} + 9{{\left( {t - y} \right)}^2}} \)\( = 3\sqrt {{{\left( {z - x} \right)}^2} + {{\left( {t - y} \right)}^2}} \)
Suy ra M'N' = 3MN.
Vậy phép biến hình f là phép đồng dạng với tỉ số k = 3.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
Đã bán 211
Đã bán 244
Đã bán 1k
Đã bán 218
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Một phép đồng dạng biến ba đỉnh A, B, C của tam giác ABC tương ứng thành A', B', C'. Chứng minh rằng
\[\frac{{BC}}{{B'C'}} = \frac{{CA}}{{C'A'}} = \frac{{AB}}{{A'B'}}\].
Câu 3:
Câu 4:
Câu 5:
Câu 6:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận