Câu hỏi:

12/07/2024 1,045

Chứng minh rằng phép biến hình có được bằng cách thực hiện liên tiếp phép đồng dạng f với tỉ số k1 và phép đồng dạng g với tỉ số k­2 là một phép đồng dạng với tỉ số k1.k2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Lấy hai điểm M, N bất kì. Gọi M', N' tương ứng là ảnh của M, N qua phép đồng dạng f với tỉ số k1 thì ta có M'N' = k1MN.

Gọi M", N" tương ứng là ảnh của M', N' qua phép đồng dạng g với tỉ số k2 thì ta có M"N" = kM'N'.

Khi đó ta có M"N" = k2 M'N' = k2 . (k1MN) = (k1.k2)MN.

Do đó, M", N" tương ứng là ảnh của M, N qua phép đồng dạng với tỉ số k1.k2.

Từ đó suy ra điều phải chứng minh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

a) Ảnh của điểm O(0; 0) qua phép biến hình f là O'(3 . 0; – 3 . 0) ≡ O(0; 0).

Ảnh của điểm N(2; 1) qua phép biến hình f là N'(3 . 2; – 3 . 1) = N'(6; – 3).

b) Chọn hai điểm M(x; y), N(z; t) bất kì. Gọi M', N' tương ứng là ảnh của M, N qua phép biến hình f. Khi đó M'(3x; – 3y), N'(3z; – 3t).

Ta có: MN = \(\sqrt {{{\left( {z - x} \right)}^2} + {{\left( {t - y} \right)}^2}} \)

M'N' = \(\sqrt {{{\left( {3z - 3x} \right)}^2} + {{\left( { - 3t - \left( { - 3y} \right)} \right)}^2}} \)\( = \sqrt {9{{\left( {z - x} \right)}^2} + 9{{\left( {t - y} \right)}^2}} \)\( = 3\sqrt {{{\left( {z - x} \right)}^2} + {{\left( {t - y} \right)}^2}} \)

Suy ra M'N' = 3MN.

Vậy phép biến hình f là phép đồng dạng với tỉ số k = 3.

Lời giải

Lời giải:

+ Phép dời hình cũng là phép đồng dạng với tỉ số k = 1.

Thật vậy, ta chứng minh như sau:

Cho hai điểm M, N bất kì và ảnh M', N' tương ứng của nó qua phép dời hình. Khi đó M'N' = MN (phép dời hình bảo toàn khoảng cách giữa hai điểm bất kì). Do đó, M', N' là ảnh của hai điểm M, N bất kì qua phép đồng dạng tỉ số 1.

+ Phép vị tự với tỉ số k là phép đồng dạng với tỉ số đồng dạng |k|.

Thật vậy, ta chứng minh như sau:

Cho hai điểm M, N bất kì và ảnh M', N' tương ứng của nó qua phép vị tự tỉ số k. Khi đó \(\overrightarrow {M'N'} = k\overrightarrow {MN} \)\( \Rightarrow M'N' = \left| k \right|MN\). Do đó, M', N' là ảnh của hai điểm M, N bất kì qua phép đồng dạng tỉ số |k| (|k| > 0).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP