Câu hỏi:

11/07/2023 646

Chứng minh rằng không có đơn đồ thị với 12 đỉnh và 28 cạnh mà các đỉnh đều có bậc 3 hoặc 6.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Giả sử có đồ thị G thỏa mãn yêu cầu bài toán. Gọi x là số đỉnh bậc 3 của đồ thị.

Khi đó số đỉnh bậc 6 của đồ thì là 12 – x.

Tổng tất cả các bậc của đỉnh của đồ thị G là 3x + 6(12 – x) = 3x + 72 – 6x = 72 – 3x.

Mà đồ thị G có 28 cạnh nên tổng tất cả các bậc của đỉnh của đồ thị G bằng 28 . 2 = 56.

Do đó ta có phương trình 72 – 3x = 56, suy ra x = \(\frac{{16}}{3} \notin \mathbb{Z}\), mà số đỉnh phải là số nguyên nên không tồn tại đồ thị thỏa mãn điều kiện đề bài.

Vậy không có đơn đồ thị với 12 đỉnh và 28 cạnh mà các đỉnh đều có bậc 3 hoặc 6.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Đồ thị Hình 2.42 chỉ có hai đỉnh bậc lẻ là D và E nên ta có thể tìm được một đường đi Euler từ D đến E (đường đi này đi qua mỗi cạnh đúng một lần).

Một đường đi Euler từ D đến E là DBACDEBCE và tổng độ dài của nó là

2 + 4 + 4 + 2 + 6 + 3 + 5 + 1 = 27.

Để quay trở lại điểm xuất phát và có đường đi ngắn nhất, ta cần tìm một đường đi ngắn nhất từ E đến D theo thuật toán gắn nhãn vĩnh viễn.

Đường đi ngắn nhất từ E đến D là ECD và có độ dài là 1 + 2 = 3.

Vậy một chu trình cần tìm là DBACDEBCECD và có độ dài là 27 + 3 = 30.

Lời giải

Lời giải:

Media VietJack

Ta vẽ được đồ thị G như hình trên.

Đồ thị G này không có khuyên và hai đỉnh chỉ được nối với nhau bằng nhiều nhất một cạnh nên là một đơn đồ thị.

Đồ thị G không phải đồ thị đầy đủ vì không phải tất cả các cặp đỉnh của nó đều được nối với nhau bằng một cạnh.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP