Câu hỏi:
11/07/2023 245Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải:
Giả sử có đồ thị G thỏa mãn yêu cầu bài toán. Gọi x là số đỉnh bậc 3 của đồ thị.
Khi đó số đỉnh bậc 6 của đồ thì là 12 – x.
Tổng tất cả các bậc của đỉnh của đồ thị G là 3x + 6(12 – x) = 3x + 72 – 6x = 72 – 3x.
Mà đồ thị G có 28 cạnh nên tổng tất cả các bậc của đỉnh của đồ thị G bằng 28 . 2 = 56.
Do đó ta có phương trình 72 – 3x = 56, suy ra x = \(\frac{{16}}{3} \notin \mathbb{Z}\), mà số đỉnh phải là số nguyên nên không tồn tại đồ thị thỏa mãn điều kiện đề bài.
Vậy không có đơn đồ thị với 12 đỉnh và 28 cạnh mà các đỉnh đều có bậc 3 hoặc 6.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Vẽ đồ thị G = (V, E) với các đỉnh và các cạnh như sau:
V = {1; 2; 3; 4; 5; 6; 7; 8} và E = {12; 13; 23; 34; 35; 67; 68; 78}.
Đồ thị này có phải là đơn đồ thị không? Có phải là đồ thị đầy đủ không?
Câu 2:
Câu 4:
Câu 6:
Câu 7:
về câu hỏi!