Câu hỏi:
13/07/2024 2,732Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải
• Xét hàm số y = ‒x.
Với x = 1 thì y = ‒1, ta được điểm A(1; ‒1) thuộc đồ thị của hàm số y = ‒x.
Vậy đồ thị hàm số y = ‒x là đường thẳng đi qua hai điểm O(0; 0) và A(1; ‒1).
• Xét hàm số y = ‒x ‒ 1.
Với x = 0 thì y = ‒1, ta được điểm B(0; ‒1) thuộc đồ thị của hàm số y = ‒x ‒ 1.
Với y = 0 thì x = ‒1, ta được điểm C(‒1; 0) thuộc đồ thị của hàm số y = ‒x ‒ 1.
Vậy đồ thị hàm số y = ‒x ‒ 1 là đường thẳng đi qua hai điểm B(0; ‒1) và C(‒1; 0).
Tương tự ta có:
• Đồ thị hàm số \(y = \frac{1}{3}x\) là đường thẳng đi qua hai điểm O(0; 0) và D(3; 1);
• Đồ thị hàm số \(y = \frac{1}{3}x + 2\) là đường thẳng đi qua hai điểm E(0; 2) và F(‒6; 0).
Ta có các đồ thị trên như hình vẽ dưới đây:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho hai đường thẳng d: y = mx ‒ (2m + 2) và d’: y = (3 ‒ 2m) x + 1 với m ≠ 0 và \(m \ne \frac{3}{2}.\)
a) Tìm giá trị của m để đường thẳng d đi qua điểm A(1; 1).
b) Gọi β là góc tạo bởi đường thẳng d ở câu a và trục Ox. Hỏi β là góc nhọn hay góc tù? Vì sao?
c) Tìm giá trị của m để d và d’ cắt nhau.
Câu 3:
Cho đường thẳng d: y = (m ‒ 2)x + 2 với m ≠ 2.
a) Tìm giá trị của m để đường thẳng d cùng với các trục Ox, Oy tạo thành tam giác có diện tích bằng 2 .
b) Chứng tỏ rằng khi giá trị của m thay đổi thì tập hợp các đường thẳng d luôn đi qua một điểm cố định.
Câu 4:
Một thiết bị tiệt khuẩn y tế bằng năng lượng mặt trời được mua với giá 60 triệu đồng, mỗi năm thiết bị tiệt khuẩn đó đều khấu hao k (triệu đồng) với 0 < k < 60. Gọi y (triệu đồng) là giá của thiết bị tiệt khuẩn đó sau x năm sử dụng.
a) Chứng tỏ rằng y là hàm số bậc nhất của x, tức là y = ax + b (a ≠ 0).
b) Trong Hình 10, tia At là một phần của đường thẳng y = ax + b. Tìm a, b. Từ đó, cho biết sau 12 năm sử dụng thì giá của thiết bị tiệt khuẩn đó bằng bao nhiêu phần trăm so với giá mua ban đầu.
Câu 5:
Câu 6:
Trong các phát biểu sau, phát biểu nào đúng?
a) Để vẽ đồ thị của hàm số y = ax + b (a ≠ 0, b ≠ 0), ta có thể xác định hai điểm P(0; b) và \(Q\left( { - \frac{b}{a};0} \right)\) rồi vẽ đường thẳng đi qua hai điểm đó.
b) Để vẽ đồ thị của hàm số y = ax + b (a ≠ 0, b ≠ 0), ta có thể xác định hai điểm M(‒1; ‒a + b) và \(N\left( { - \frac{b}{a};b} \right)\) rồi vẽ đường thẳng đi qua hai điểm đó.
c) Để vẽ đồ thị của hàm số y = ax + b (a ≠ 0, b ≠ 0), ta có thể xác định hai điểm I(1; a + b) và K(‒2; ‒2a + b) rồi vẽ đường thẳng đi qua hai điểm đó.
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 1)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận