Câu hỏi:
13/07/2024 1,665
Một thiết bị tiệt khuẩn y tế bằng năng lượng mặt trời được mua với giá 60 triệu đồng, mỗi năm thiết bị tiệt khuẩn đó đều khấu hao k (triệu đồng) với 0 < k < 60. Gọi y (triệu đồng) là giá của thiết bị tiệt khuẩn đó sau x năm sử dụng.
a) Chứng tỏ rằng y là hàm số bậc nhất của x, tức là y = ax + b (a ≠ 0).
b) Trong Hình 10, tia At là một phần của đường thẳng y = ax + b. Tìm a, b. Từ đó, cho biết sau 12 năm sử dụng thì giá của thiết bị tiệt khuẩn đó bằng bao nhiêu phần trăm so với giá mua ban đầu.

Một thiết bị tiệt khuẩn y tế bằng năng lượng mặt trời được mua với giá 60 triệu đồng, mỗi năm thiết bị tiệt khuẩn đó đều khấu hao k (triệu đồng) với 0 < k < 60. Gọi y (triệu đồng) là giá của thiết bị tiệt khuẩn đó sau x năm sử dụng.
a) Chứng tỏ rằng y là hàm số bậc nhất của x, tức là y = ax + b (a ≠ 0).
b) Trong Hình 10, tia At là một phần của đường thẳng y = ax + b. Tìm a, b. Từ đó, cho biết sau 12 năm sử dụng thì giá của thiết bị tiệt khuẩn đó bằng bao nhiêu phần trăm so với giá mua ban đầu.
Quảng cáo
Trả lời:
Lời giải
a) Sau x năm sử dụng, thiết bị tiệt khuẩn đó bị khấu hhao là kx (triệu đồng).
Giá của thiết bị tiệt khuẩn đó sau x năm sử dụng là: y = 60 ‒ kx hay y = ‒kx + 60.
Mà k ≠ 0, suy ra y là hàm số bậc nhất của x.
b) Từ câu a, ta có b = 60.
Do đường thẳng y = ax + b đi qua điểm B(10; 30) nên ta có:
30 = a.10 + 60.
Hay 10a = –30
Suy ra a = ‒3.
Khi đó, đường thẳng cần tìm là: y = ‒3x + 60.
Giá của thiết bị tiệt khuẩn đó sau 12 năm sử dụng là:
‒3.12 + 60 = –36 + 60 = 24 (triệu đồng).
Tỉ số phần trăm giữa giá của thiết bị tiệt khuẩn đó sau 12 năm sử dụng và giá mua ban đầu là: \(\frac{{24}}{{60}}.100{\rm{\% }} = 40{\rm{\% }}\)
Vậy sau 12 năm sử dụng thì giá của thiết bị tiệt khuẩn đó bằng 40% so với giá mua ban đầu.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Do đường thẳng y = ax + b (a ≠ 0) song song với đường thẳng y = 2x ‒ 5 nên a = 2 (thoả mãn) và b ≠ ‒5.
Mà đường thẳng y = ax + b đi qua điểm A(2; 0), suy ra 0 = 2.2 + b hay b = ‒4 (thoả mãn).
Do đó, đường thẳng cần tìm là y = 2x – 4.
Với x = 0 thì y = ‒4, ta được điểm B(0; ‒4) thuộc đồ thị của hàm số y = 2x ‒ 4.
Vậy đồ thị của hàm số y = 2x ‒ 4 là đường thẳng đi qua hai điểm A(2; 0) và B(0; ‒5).
Lời giải
Lời giải
a) Do đường thẳng d đi qua điểm A(1; 1) nên thay x = 1, y = 1 vào y = mx ‒ (2m + 2) ta có:
1 = m.1 ‒ (2m + 2)
Do đó 1 = m – 2m – 2
Suy ra m = –3.
Vậy với m = ‒3 thì đường thẳng d đi qua điểm A(1; 1).
b) Với m = ‒3, ta có đường thẳng d: y = ‒3x + 4.
Suy ra hệ số góc của đường thẳng d là a = –3 < 0. Vậy góc β là góc tù.
c) Để d và d’ cắt nhau thì m ≠ 3 ‒ 2m hay 3m ≠ 3
Suy ra m ≠ 1.
Vậy với \(m \ne 0,m \ne \frac{3}{2},m \ne 1\) thì d và d’ cắt nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.