Câu hỏi:
13/07/2024 310Cho dãy số (un) biết u1 = – 2, \({u_{n + 1}} = \frac{{{u_n}}}{{1 - {u_n}}}\) với n ∈ ℕ*. Đặt \({v_n} = \frac{{{u_n} + 1}}{{{u_n}}}\) với n ∈ ℕ*.
Chứng minh rằng dãy số (vn) là một cấp số cộng. Tìm số hạng đầu, công sai của cấp số cộng đó.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có \({v_n} = \frac{{{u_n} + 1}}{{{u_n}}} = 1 + \frac{1}{{{u_n}}}\), \({v_{n + 1}} = 1 + \frac{1}{{{u_{n + 1}}}} = 1 + \frac{1}{{\frac{{{u_n}}}{{1 - {u_n}}}}} = 1 + \frac{{1 - {u_n}}}{{{u_n}}} = \frac{1}{{{u_n}}}\).
Khi đó, \({v_{n + 1}} - {v_n} = \frac{1}{{{u_n}}} - \left( {1 + \frac{1}{{{u_n}}}} \right) = - 1\) không đổi với mọi n ∈ ℕ*.
Vậy dãy số (vn) là một cấp số cộng có số hạng đầu là \({v_1} = 1 + \frac{1}{{{u_1}}} = 1 + \frac{1}{{ - 2}} = \frac{1}{2}\) và công sai d = – 1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm số hạng đầu và công sai của cấp số cộng (un), biết:
\(\left\{ \begin{array}{l}{u_4} = 10\\{u_7} = 19;\end{array} \right.\)
Câu 2:
Cho (un) là cấp số cộng có Sn = n2 + 4n với n ∈ ℕ*. Số hạng đầu u1 và công sai d của cấp số cộng đó là:
A. u1 = 3, d = 2.
B. u1 = 5, d = 2.
C. u1 = 8, d = – 2.
D. u1 = – 5, d = 2.
Câu 3:
Cho (un) là cấp số cộng có số hạng đầu u1 = 2, công sai d = − 5. Tổng 10 số hạng đầu của cấp số cộng đó là:
A. – 410.
B. – 205.
C. 245.
D. – 230.
Câu 4:
Cho cấp số cộng (un) biết \({u_1} = \frac{1}{3}\); u8 = 26. Công sai d của cấp số cộng đó là:
A. \(\frac{{11}}{3}\).
B. \(\frac{{10}}{3}\).
C. \(\frac{3}{{10}}\).
D. \(\frac{3}{{11}}\).
Câu 5:
Trong các dãy số (un) với số hạng tổng quát sau, dãy số nào là cấp số cộng?
A. un = 3n.
B. un = 1 – 3n.
C. un = 3n + 1.
D. un = 3 + n2.
Câu 6:
Cho cấp số cộng (un) biết u5 + u7 = 19. Giá trị của u2 + u10 là:
A. 38.
B. 29.
C. 12.
D. 19.
Câu 7:
Tìm số hạng đầu và công sai của cấp số cộng (un), biết:
\(\left\{ \begin{array}{l}{S_{10}} = 165\\{S_{20}} = 630.\end{array} \right.\)
về câu hỏi!