Câu hỏi:

13/07/2024 505

Tìm phép đối xứng tâm biến mỗi hình sau thành chính nó.

Tìm phép đối xứng tâm biến mỗi hình sau thành chính nó.   (ảnh 1)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta xét hình màu đỏ:

Tìm phép đối xứng tâm biến mỗi hình sau thành chính nó.   (ảnh 2)

Giả sử ta chọn điểm O trên hình màu đỏ như hình vẽ.

Lấy điểm B trùng O. Khi đó qua O, điểm đối xứng với B là chính nó.

Lấy điểm A bất kì trên hình màu đỏ sao cho A ≠ O.

Khi đó ta luôn xác định được một điểm A’ sao cho O là trung điểm của đoạn AA’.

Tương tự như vậy, với mỗi điểm M bất kì khác O trên hình màu đỏ, ta đều xác định được một điểm M’ trên hình sao cho O là trung điểm của đoạn MM’.

Vậy phép đối xứng tâm O biến hình màu đỏ thành chính nó.

Ta xét hình màu xanh lá:

Tìm phép đối xứng tâm biến mỗi hình sau thành chính nó.   (ảnh 3)

Giả sử ta chọn điểm I trên hình màu xanh lá như hình vẽ.

Lấy điểm F trùng I. Khi đó qua I, điểm đối xứng với F là chính nó.

Lấy điểm E bất kì trên hình màu xanh lá sao cho E ≠ I.

Khi đó ta luôn xác định được một điểm E’ sao cho I là trung điểm của đoạn EE’.

Tương tự như vậy, với mỗi điểm M bất kì khác I trên hình màu xanh lá, ta đều xác định được một điểm M’ trên hình sao cho I là trung điểm của đoạn MM’.

Vậy phép đối xứng tâm I biến hình màu xanh lá thành chính nó.

Ta xét hình màu xanh biển:

Tìm phép đối xứng tâm biến mỗi hình sau thành chính nó.   (ảnh 4)

Giả sử ta chọn điểm H trên hình màu xanh biển như hình vẽ.

Lấy điểm P trùng H. Khi đó qua H, điểm đối xứng với P là chính nó.

Lấy điểm P bất kì trên hình màu xanh biển sao cho P ≠ H.

Khi đó ta luôn xác định được một điểm P’ sao cho H là trung điểm của đoạn PP’.

Tương tự như vậy, với mỗi điểm M bất kì khác H trên hình màu xanh biển, ta đều xác định được một điểm M’ trên hình sao cho H là trung điểm của đoạn MM’.

Vậy phép đối xứng tâm H biến hình màu xanh biển thành chính nó.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình:

(C): x2 + y2 – 4x – 5 = 0. Viết phương trình ảnh của (C) qua phép đối xứng tâm O.

Xem đáp án » 13/07/2024 1,887

Câu 2:

Trong mặt phẳng tọa độ Oxy, tìm ảnh qua ĐO của

a) điểm M(3; –4);

b) đường thẳng d: x – 3y + 6 = 0;

c) đường tròn (C): (x + 2)2 + (y – 1)2 = 4.

Xem đáp án » 13/07/2024 1,775

Câu 3:

Trong mặt phẳng tọa độ Oxy, cho các điểm I(1; 1), M(2; 2), N(0; –3) và P(–1; –2). Tìm tọa độ các điểm M’ = ĐI(M), N’ = ĐI(N), P’ = ĐI(P).

Xem đáp án » 13/07/2024 1,476

Câu 4:

Vận dụng phép đối xứng tâm và đối xứng trục để cắt hoa văn trang trí theo hướng dẫn sau:

– Lấy một tờ giấy hình vuông, gấp đôi, gấp tư rồi gấp làm tám (Hình 14a).

– Vẽ hoa và lá trên bề mặt tam giác (Hình 14b).

– Dùng kéo cắt theo đường đã vẽ (Hình 14c).

– Trải phẳng tờ giấy ra để thấy hoa văn trang trí gồm hoa và lá (Hình 14d).

Tìm tâm đối xứng và trục đối xứng của hoa văn vừa làm.

Vận dụng phép đối xứng tâm và đối xứng trục để cắt hoa văn trang trí theo hướng dẫn sau: – Lấy một tờ giấy hình vuông, gấp đôi, gấp tư rồi gấp làm tám (Hình 14a). – Vẽ hoa và lá trên bề mặt tam giác (Hình 14b). – Dùng kéo cắt theo đường đã vẽ (Hình 14c). – Trải phẳng tờ giấy ra để thấy hoa văn trang trí gồm hoa và lá (Hình 14d). Tìm tâm đối xứng và trục đối xứng của hoa văn vừa làm. (ảnh 1)

Xem đáp án » 13/07/2024 880

Câu 5:

Trong Hình 11, hình nào có trục đối xứng, hình nào có tâm đối xứng?

Trong Hình 11, hình nào có trục đối xứng, hình nào có tâm đối xứng?   (ảnh 1)

Xem đáp án » 13/07/2024 815

Câu 6:

Cho hình bình hành ABCD có AC cố định còn B di động trên (O; R). Hãy cho biết D di động trên đường nào.

Xem đáp án » 13/07/2024 756

Câu 7:

a) Trong Hình 9, hình nào có tâm đối xứng? Tìm tâm đối xứng (nếu có).

a) Trong Hình 9, hình nào có tâm đối xứng? Tìm tâm đối xứng (nếu có).   b) Nêu tên một hình có vô số tâm đối xứng. (ảnh 1)

b) Nêu tên một hình có vô số tâm đối xứng.

 

Xem đáp án » 13/07/2024 753

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store