Câu hỏi:

13/07/2024 611

Giả sử ĐO là phép đối xứng tâm O. Lấy hai điểm tùy ý A, B sao cho ba điểm O, A, B không thẳng hàng. Gọi A’, B’ lần lượt là ảnh của A, B qua ĐO. So sánh tam giác OAB và tam giác O’A’B’ rồi so sánh A’B’ và AB.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Giả sử ĐO là phép đối xứng tâm O. Lấy hai điểm tùy ý A, B sao cho ba điểm O, A, B không thẳng hàng. Gọi A’, B’ lần lượt là ảnh của A, B qua ĐO. So sánh tam giác OAB và tam giác O’A’B’ rồi so sánh A’B’ và AB. (ảnh 1)

Theo đề, ta có ĐO(A) = A’.

Suy ra O là trung điểm AA’, do đó OA = OA’.

Chứng minh tương tự, ta được OB = OB’.

Xét ∆OAB và ∆OA’B’, có:

OA = OA’ (chứng minh trên);

AOB^=A'OB'^ (đối đỉnh);

OB = OB’ (chứng minh trên).

Do đó ∆OAB = ∆OA’B’ (c.g.c).

Suy ra AB = A’B’ (cặp cạnh tương ứng).

Vậy ∆OAB = ∆OA’B’ và A’B’ = AB.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đường tròn (C): x2 + y2 – 4x – 5 = 0 có tâm I(2; 0), bán kính R=22+025=3.

Gọi đường tròn (C’) là ảnh của đường tròn (C) qua phép đối xứng tâm O.

Suy ra đường tròn (C’) có tâm là ảnh của I(2; 0) và bán kính R’ = R = 3.

Gọi I’ = ĐO(I), suy ra O là trung điểm II’ với I(2; 0).

Do đó xI'=2xOxI=2.02=2yI'=2yOyI=2.00=0

Vì vậy tọa độ I’(–2; 0).

Vậy đường tròn (C’) có tâm I’(–2; 0) và bán kính R’ = 3 có phương trình là:

(x + 2)2 + y2 = 9.

Lời giải

a) Gọi M’ là ảnh của M qua ĐO.

Suy ra O là trung điểm của MM’ với M(3; –4).

Do đó xM'=2xOxM=2.03=3yM'=2yOyM=2.0+4=4

Vậy M’(–3; 4).

b) • Chọn A(0; 2) ∈ d: x – 3y + 6 = 0.

Gọi A’ là ảnh của A qua ĐO.

Suy ra O là trung điểm của AA’ với A(0; 2)

Do đó xA'=2xOxA=2.00=0yA'=2yOyA=2.02=2

Vì vậy A’(0; –2).

• Đường thẳng d: x – 3y + 6 = 0 có vectơ pháp tuyến n=1;3.

Gọi d’ là ảnh của d qua ĐO.

Suy ra d’ song song hoặc trùng với d, nên d’ nhận vectơ pháp tuyến của d là n=1;3 làm vectơ pháp tuyến.

Vậy đường thẳng d’ đi qua A’(0; –2) và nhận n=1;3 làm vectơ pháp tuyến nên có phương trình là:

1(x – 0) – 3(y + 2) = 0 hay x – 3y – 6 = 0.

c) Đường tròn (C): (x + 2)2 + (y – 1)2 = 4 có tâm I(–2; 1), bán kính R = 2.

Gọi (C’) là ảnh của (C) qua ĐO nên (C’) có tâm là ảnh của I(–2; 1) và có bán kính R’ = R = 2.

Gọi I’ = ĐO(I).

Suy ra O là trung điểm II’.

Do đó xI'=2xOxI=2.0+2=2yI'=2yOyI=2.01=1

Vì vậy tọa độ I’(2; –1).

Vậy đường tròn (C’) là ảnh của (C) qua ĐO, có tâm I’(2; –1) và R’ = 2 nên có phương trình là:

(x – 2)2 + (y + 1)2 = 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP