Câu hỏi:
12/07/2024 520Hình 59 mô tả một viên gạch trang trí hình tam giác đều. Chứng minh rằng hình hoa ba cánh màu xanh và hình hoa ba cánh màu đỏ đồng dạng với nhau.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Gọi viên gạch trang trí là ABC, giao của các canh hoa màu đỏ với BC, CA, AB lần lượt là các điểm D, E, F, G là tâm của hình tam giác đều, khi đó G là tâm của các hình hoa (quan sát hình vẽ dưới đây).
Qua phép quay tâm G, góc quay 120° hình cánh hoa màu xanh đỉnh A biến thành hình cánh hoa màu xanh đỉnh B, hình cánh hoa màu xanh đỉnh B biến thành hình cánh hoa màu xanh đỉnh C, hình cánh hoa màu đỏ đỉnh F biến thành hình cánh hoa màu đỏ đỉnh D, hình cánh hoa màu đỏ đỉnh D biến thành hình cánh hoa màu đỏ đỉnh E. Do đó, các hình cánh hoa màu xanh đồng dạng với nhau theo tỉ số 1 và các hình cánh hoa màu đỏ đồng dạng với nhau theo tỉ số 1 (phép dời hình là phép đồng dạng tỉ số 1).
Do đó, GA = GB = GC và GD = GE = GF.
Ta có G là tâm của hình tam giác đều ABC nên G cũng là trọng tâm của tam giác ABC và D, E, F lần lượt là trung điểm của BC, CA, AB. Khi đó ta có: và . Do đó, D, E, F lần lượt là ảnh của A, B, C qua phép vị tự tâm G, tỉ số . Như vậy, khi ta lấy mỗi điểm bất kì trên hình hoa ba cánh màu xanh thì qua phép vị tự tâm G, tỉ số , điểm đó đều biến thành một điểm tương ứng trên hình hoa ba cánh màu đỏ. Vậy có phép đồng dạng biến hình hoa ba cánh màu xanh thành hình hoa ba cánh màu đỏ. Do đó, rằng hình hoa ba cánh màu xanh và hình hoa ba cánh màu đỏ đồng dạng với nhau.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Khẳng định nào dưới đây là đúng?
a) Hai tam giác luôn đồng dạng với nhau;
b) Hai hình chữ nhật luôn đồng dạng với nhau;
c) Hai hình thoi luôn đồng dạng với nhau;
d) Hai hình vuông luôn đồng dạng với nhau.
Câu 2:
Phép biến hình nào trong các phép biến hình dưới đây là phép vị tự?
a) Phép tịnh tiến theo vectơ khác ;
b) Phép đối xứng tâm;
c) Phép đối xứng trục;
d) Phép quay.
Câu 3:
Cho hai đường tròn (O1; R) và (O2; 2R) tiếp xúc ngoài với nhau tại điểm A. Tìm phép vị tự biến đường tròn (O1; R) thành đường tròn (O2; 2R).
Câu 4:
Cho hình vuông ABCD có hai đường chéo cắt nhau tại O. Gọi M, N, E lần lượt là trung điểm của AB, BC, BO (Hình 58). Chứng minh rằng hai hình AMOD và OENC đồng dạng với nhau.
Câu 5:
Phép biến hình nào trong các phép biến hình dưới đây không là phép đồng dạng?
a) Phép đối xứng trục;
b) Phép đồng nhất;
c) Phép vị tự tỉ số k = 1;
d) Phép biến hình biến mỗi điểm trong mặt phẳng thành điểm A cho trước.
Câu 6:
Một thấu kính phân kì có tiêu cự OF = OF' = 20 cm (kính cận). Vật sáng AB được đặt vuông góc với trục chính của thấu kính, cách thấu kính một đoạn OA = 60 cm, qua thấu kính cho ảnh ảo A'B' (Hình 57). A'B' là ảnh của AB qua một phép vị tự tâm O tỉ số k.
Tính khoảng cách A'O từ ảnh đến thấu kính và so sánh khoảng cách đó với khoảng cách AO từ vật đến thấu kính.
Câu 7:
Cho tam giác ABC có O là trung điểm của cạnh BC. Xác định ảnh của tam giác ABC trong phép vị tự tâm O tỉ số .
về câu hỏi!