Câu hỏi:

12/07/2024 936 Lưu

Hình 59 mô tả một viên gạch trang trí hình tam giác đều. Chứng minh rằng hình hoa ba cánh màu xanh và hình hoa ba cánh màu đỏ đồng dạng với nhau.

Hình 59 mô tả một viên gạch trang trí hình tam giác đều. Chứng minh rằng hình hoa ba cánh màu xanh và hình hoa ba cánh màu đỏ đồng dạng với nhau.    (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi viên gạch trang trí là ABC, giao của các canh hoa màu đỏ với BC, CA, AB lần lượt là các điểm D, E, F, G là tâm của hình tam giác đều, khi đó G là tâm của các hình hoa (quan sát hình vẽ dưới đây).

Hình 59 mô tả một viên gạch trang trí hình tam giác đều. Chứng minh rằng hình hoa ba cánh màu xanh và hình hoa ba cánh màu đỏ đồng dạng với nhau.    (ảnh 2)

Qua phép quay tâm G, góc quay 120° hình cánh hoa màu xanh đỉnh A biến thành hình cánh hoa màu xanh đỉnh B, hình cánh hoa màu xanh đỉnh B biến thành hình cánh hoa màu xanh đỉnh C, hình cánh hoa màu đỏ đỉnh F biến thành hình cánh hoa màu đỏ đỉnh D, hình cánh hoa màu đỏ đỉnh D biến thành hình cánh hoa màu đỏ đỉnh E. Do đó, các hình cánh hoa màu xanh đồng dạng với nhau theo tỉ số 1 và các hình cánh hoa màu đỏ đồng dạng với nhau theo tỉ số 1 (phép dời hình là phép đồng dạng tỉ số 1).

Do đó, GA = GB = GC và GD = GE = GF. 

Ta có G là tâm của hình tam giác đều ABC nên G cũng là trọng tâm của tam giác ABC và D, E, F lần lượt là trung điểm của BC, CA, AB. Khi đó ta có: GD=12GA,  GE=12GBGF=12GC. Do đó, D, E, F lần lượt là ảnh của A, B, C qua phép vị tự tâm G, tỉ số 12. Như vậy, khi ta lấy mỗi điểm bất kì trên hình hoa ba cánh màu xanh thì qua phép vị tự tâm G, tỉ số 12, điểm đó đều biến thành một điểm tương ứng trên hình hoa ba cánh màu đỏ. Vậy có phép đồng dạng biến hình hoa ba cánh màu xanh thành hình hoa ba cánh màu đỏ. Do đó, rằng hình hoa ba cánh màu xanh và hình hoa ba cánh màu đỏ đồng dạng với nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

+ Khẳng định a) và b) sai.

- Ta có thể lấy hai tam giác với các kích thước là (3; 4; 5) và (6; 7; 8), ta thấy tỉ lệ các cặp cạnh tương ứng không bằng nhau. Do đó hai tam giác bất kì không đồng dạng với nhau.

- Tương tự, hai hình chữ nhật bất kì cũng không đồng dạng với nhau.

+ Khẳng định c) và d) đúng.

Vì hình thoi và hình vuông đều là các hình có 4 cạnh bằng nhau.

Lời giải

Chú ý: Phép vị tự biến đường tròn có bán kính R thành đường tròn có bán kính R' = |k|R và có tâm là ảnh của tâm.

Hai đường tròn (O1; R) và (O2; 2R) tiếp xúc ngoài với nhau tại điểm A và đường tròn tâm O2 có bán kính gấp 2 lần đường tròn tâm O1.

Cho hai đường tròn (O1; R) và (O2; 2R) tiếp xúc ngoài với nhau tại điểm A. Tìm phép vị tự biến đường tròn (O1; R) thành đường tròn (O2; 2R).  (ảnh 1)

- Trên đường tròn (O1; R) lấy điểm B bất kì.

- Trên đường tròn (O2; 2R) dựng đường kính CD // O1­­B.

- BC cắt O1O2 tại E.

+) Ta có: O1B // CO2 nên theo định lí Thales có EO2EO1=O2CO1B=2RR=2.

Suy ra EO2=2EO1 nên ta có phép vị tự tâm E, tỉ số 2 biến điểm O1 thành điểm O2.

Như vậy, phép vị tự tâm E, tỉ số 2 biến đường tròn (O1; R) thành đường tròn (O2; 2R).

+) Nối B với D, ta chứng minh được BD cắt O1O2 tại điểm tiếp xúc A của hai đường tròn.

Ta có: AO2AO1=2RR=2 và A nằm giữa hai điểm O1 và O2 nên AO2=2AO1. Do đó, ta có phép vị tự tâm A, tỉ số – 2 biến điểm O1 thành điểm O2.

Như vậy, phép vị tự tâm A, tỉ số – 2 biến đường tròn (O1; R) thành đường tròn (O2; 2R).

Vậy có 2 phép vị tự biến đường tròn (O1; R) thành đường tròn (O2; 2R).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP