Câu hỏi:

19/08/2025 3,524 Lưu

Cho hình hộp ABCD.A’B’C’D’. Gọi M và N lần lượt là trung điểm của AB và A’B’ và O là một điểm thuộc miền trong của mặt bên CC’D’D. Tìm giao tuyến của mặt phẳng (OMN) với các mặt của hình hộp.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình hộp ABCD.A’B’C’D’. Gọi M và N lần lượt là trung điểm của AB và A’B’ và O là một điểm thuộc miền trong của mặt bên CC’D’D. Tìm giao tuyến của mặt phẳng (OMN) với các mặt của hình hộp.  (ảnh 1)

Trong mặt phẳng (CDD’C’), từ điểm O kẻ đường thẳng song song với MN cắt CD tại Q và C’D’ tại P. Suy ra mp(OMN) = mp(MNPQ). Khi đó:

+) Giao tuyến của (OMN) với (ABB’A’) là MN.

+) Giao tuyến của (OMN) với (A’B’C’D’) là NP.

+) Giao tuyến của (OMN) với (CC’D’D) là PQ.

+) Giao tuyến của (OMN) với (ABCD) là MQ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a,

: Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng hoàn toàn khác nhau. Lấy các điểm M, N lần lượt thuộc các đường chéo AC và BF sao cho MC = 2MA; NF = 2NB. Qua M, N kẻ các đường thẳng song song với AB, cắt các cạnh AD, AF lần lượt tại M1, N1. Chứng minh rằng:  a) MN // DE; (ảnh 1)

+) Trong mặt phẳng (ABCD) kéo dài DM cắt AB tại O

Vì AO // DC nên  AODC=AMMC=OMMD=12 (định lí Thales)

Suy ra  AO=12AB.

+) Gọi N’ là giao điểm của BF và OE, khi đó: OBEF=BN'N'F=ON'N'F=12BN'=2N'F nên N’ trùng N.

+) Trong mặt phẳng (ODE), có:  OMDM=ONNE=12.

Suy ra MN // DE (định lí Thales đảo).

Câu 2

A. (MNP) // (BCA);
B. (MNQ) // (A’B’C’);
C. (NQP) // (CAB);
D. (MPQ) // (ABA’).

Lời giải

Đáp án đúng là: D

Ta có: (MPQ) // (ABA’) vì:

MQ // AB (ABA’)

Mà MQ (MNQ)

Do đó (MPQ) // (ABA’).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Bốn điểm I, J, B, C đồng phẳng;

B. Bốn điểm I, J, A, C đồng phẳng;
C. Bốn điểm I, J, B, D đồng phẳng;
D. Bốn điểm I, J, C, D đồng phẳng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP