Câu hỏi:

12/07/2024 1,066

Cho mặt phẳng (α) và hai đường thẳng chéo nhau a, b cắt (α) tại A và B. Gọi d là đường thẳng thay đổi luôn luôn song song với (α) và cắt a tại M, cắt b tại N. Qua điểm N dựng đường thẳng song song với a cắt (α) tại điểm C.

a) Tứ giác MNCA là hình gì?

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho mặt phẳng (α) và hai đường thẳng chéo nhau a, b cắt (α) tại A và B. Gọi d là đường thẳng thay đổi luôn luôn song song với (α) và cắt a tại M, cắt b tại N. Qua điểm N dựng đường thẳng song song với a cắt (α) tại điểm C. a) Tứ giác MNCA là hình gì? (ảnh 1)

a) Vì d // (α) nên phép chiếu song song của d trên mặt phẳng (α) là AC và d // AC hay MN // AC.

Mặt khác ta lại có AM // NC

Do đó tứ giác MNCA là hình bình hành.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng hoàn toàn khác nhau. Lấy các điểm M, N lần lượt thuộc các đường chéo AC và BF sao cho MC = 2MA; NF = 2NB. Qua M, N kẻ các đường thẳng song song với AB, cắt các cạnh AD, AF lần lượt tại M1, N1. Chứng minh rằng:

a) MN // DE;

Xem đáp án » 12/07/2024 4,842

Câu 2:

Cho tứ diện ABCD với I và J lần lượt là trung điểm các cạnh AB và CD. Mệnh đề nào sau đây đúng?

Xem đáp án » 31/07/2023 3,511

Câu 3:

Cho hình chóp SABCD có AC cắt BD tại M, AB cắt CD tại N. Trong các đường thẳng sau đây, đường nào là giao tuyến của (SAC) và (SBD)?

A. SM;

B. SN;

C. SB;

D. SC.

Xem đáp án » 31/07/2023 2,993

Câu 4:

Cho hình lăng trụ ABC.A’B’C’. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, AA’, A’C’, BC. Ta có:

Xem đáp án » 31/07/2023 2,762

Câu 5:

Cho tam giác ABC. Lấy điểm M trên cạnh AC kéo dài (Hình 1). Mệnh đề nào sau đây là mệnh đề sai?

Cho tam giác ABC. Lấy điểm M trên cạnh AC kéo dài (Hình 1). Mệnh đề nào sau đây là mệnh đề sai?  A. M ∈ (ABC); B. C ∈ (ABM); C. A ∈ (MBC); D. B ∈ (ACM).  (ảnh 1)

Xem đáp án » 31/07/2023 2,699

Câu 6:

Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng 10. M là điểm trên SA sao cho SMSA=23. Một mặt phẳng (α) đi qua M song song với AB và CD, cắt hình chóp theo một tứ giác có diện tích là:

Xem đáp án » 31/07/2023 2,500

Câu 7:

Cho hình bình hành ABCD và một điểm S không nằm trong mặt phẳng (ABCD). Giao tuyến của hai mặt phẳng (SAB) và (SCD) là một đường thẳng song song với đường thẳng nào sau đây?

Xem đáp án » 31/07/2023 1,991

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn