Câu hỏi:

13/07/2024 823

Cho hình vuông ABCD có AB = 12 cm. Trên cạnh CD lấy điểm E sao cho DE = 5 cm. Tia phân giác của góc BAE cắt BC tại F. Trên tia đối của tia BC lấy điểm M sao cho BM = DE.

Chứng minh AE = AM = FM.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình vuông ABCD có AB = 12 cm Chứng minh AE = AM = FM (ảnh 1)

Do ABCD là hình vuông nên AB = AD, \(\widehat {ADC} = \widehat {ABC} = 90^\circ \)

Ta có: \(\widehat {ABM} + \widehat {ABC} = 180^\circ \) (2 góc kề bù) nên \(\widehat {ABM} = 180^\circ - \widehat {ABC} = 180^\circ - 90^\circ = 90^\circ \)

Xét ∆ADE và ∆ABM có:

\(\widehat {ADE} = \widehat {ABM} = 90^\circ \), AD = AB, DE = BM

Do đó ∆ADE = ∆ABM (hai cạnh góc vuông)

Suy ra AE = AM (1) \(\widehat {DAE} = \widehat {BAM}\).

Do AF là tia phân giác của \(\widehat {BAE}\) nên \(\widehat {EAF} = \widehat {BAF}\).

Suy ra \(\widehat {DAE} + \widehat {EAF} = \widehat {BAM} + \widehat {BAF}\) hay \(\widehat {DAF} = \widehat {MAF}\).

\(\widehat {DAF} = \widehat {MFA}\) (hai góc so le trong do AD // BC), suy ra \(\widehat {MFA} = \widehat {MAF}\).

Do đó, tam giác MAF cân tại M nên AM = FM (2)

Từ (1) và (2) suy ra AE = AM = FM.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD. Ở phía ngoài hình bình hành, vẽ các hình vuông ABEF và ADGH (Hình 26).

Cho hình bình hành ABCD. Ở phía ngoài hình Chứng minh AC vuông góc HF (ảnh 1)

Chứng minh:

AC HF.

Xem đáp án » 13/07/2024 1,946

Câu 2:

Cho hình vuông ABCD có hai đường chéo AC và BD cắt nhau tại O. Trên tia đối của tia CB lấy điểm K sao cho BC = CK. Từ điểm B kẻ đường thẳng song song với AC cắt tia DC tại E. Gọi F là trung điểm của BE.

Chứng minh các tứ giác BOCF và BDKE đều là hình vuông.

Xem đáp án » 13/07/2024 1,619

Câu 3:

Cho tam giác ABC có các đường trung tuyến BD, CE cắt nhau tại G. Gọi F, H lần lượt là trung điểm của BG, CG.

Tìm điều kiện của tam giác ABC để tứ giác EFHD là hình vuông.

Xem đáp án » 13/07/2024 1,270

Câu 4:

Cho hình vuông ABCD có AB = 12 cm. Trên cạnh CD lấy điểm E sao cho DE = 5 cm. Tia phân giác của góc BAE cắt BC tại F. Trên tia đối của tia BC lấy điểm M sao cho BM = DE.

Tính độ dài BF.

Xem đáp án » 13/07/2024 1,209

Câu 5:

Cho tam giác ABC có các đường trung tuyến BD, CE cắt nhau tại G. Gọi F, H lần lượt là trung điểm của BG, CG.

Tứ giác EFHD là hình gì? Vì sao?

Xem đáp án » 13/07/2024 899

Câu 6:

Cho hình vuông ABCD. Lấy điểm E thuộc cạnh CD và điểm F thuộc tia đối của tia BC sao cho BF = DE.

Gọi I là trung điểm của EF. Trên tia đối của tia IA lấy điểm K sao cho IK = IA. Chứng minh tứ giác AEKF là hình vuông.

Xem đáp án » 13/07/2024 821
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua