Câu hỏi:

10/08/2023 614 Lưu

Cho hàm số y = f(x) xác định và liên tục trên đoạn [-2;2] và có đồ thị là đường cong trong hình vẽ bên dưới. Tîm số nghiệm thực nhiều nhất của phương trình fx22x=m.

Cho hàm số y = f(x) xác định và liên tục trên đoạn [-2;2] và có đồ thị là đường cong trong hình vẽ bên dưới. Tîm số nghiệm thực nhiều nhất của phương trình (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: 8

Ta có đồ thị của hàm số y=f(x) như hình vẽ bên.

Cho hàm số y = f(x) xác định và liên tục trên đoạn [-2;2] và có đồ thị là đường cong trong hình vẽ bên dưới. Tîm số nghiệm thực nhiều nhất của phương trình (ảnh 2)

Sử dụng phương pháp ghép trục ta có bảng biến thiên của hàm y=fx22x như sau

Cho hàm số y = f(x) xác định và liên tục trên đoạn [-2;2] và có đồ thị là đường cong trong hình vẽ bên dưới. Tîm số nghiệm thực nhiều nhất của phương trình (ảnh 3)

Dựa vào bảng biến thiên thì phương trình fx22x=m có nhiều nhất là 8 nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Gọi V là thể tích khối lăng trụ ABC.A'B'C'.

Cho lăng trụ ABC.A'B'C'. Biết diện tích mặt bên (ABB'A') bằng 15, khoảng cách từ C đến mặt phẳng (ABB'A') bằng 6. Tính thể tích khối lăng trụ ABC.A'B'C'. (ảnh 1)

Ta có VC',ABC=13 dC',(ABC)SABC=13 V

VC'ABB'A'=VVC'ABC=V13 V=23 V

Mà VC'.ABB'A'=13 dC',ABB'A'SABB'A'=13.15.6=30

VC'ABBA'=23 V=30V=45.

Lời giải

Chọn B
Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của SB, SD và OC. Gọi giao điểm của (MNP) với SA là K.  (ảnh 1)

Trong mặt phẳng (SBD), gọi I là giao điêm của MN và SO

Ta có SA(SAC);(MNP)(SAC)=PI

Trong mặt phẳng (SAC), PI cắt SA tại K => K là giao điểm của SA và (MNP)

Mặt khác: MN là đường trung bình của tam giác SBD nên MN cắt SO tại trung điểm I

=> PI là đường trung bình của tam giác => PI // SC hay PK // SC

KSKA=PCPA=14AC34AC=13.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP