Câu hỏi:
15/08/2023 819Cho phương trình (m2 + 2)cos2x – 2msin2x + 1 = 0. Để phương trình có nghiệm thì giá trị thích hợp của tham số m là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có: (m2 + 2)cos2x – 2msin2x + 1 = 0
\( \Leftrightarrow \left( {{m^2} + 2} \right).\frac{{1 + \cos 2x}}{2} - 2m\sin 2x + 1 = 0\)
⇔ (m2 + 2)cos2x – 4msin2x = −(m2 + 2) – 2
⇔ (m2 + 2)cos2x – 4msin2x = −m2 – 4
Để phương trình có nghiệm thì:
(m2 + 2)2 + 16m2 ≥ (m2 + 4)2
⇔ m4 + 4m2 + 4 + 16m2 ≥ m4 + 8m2 + 16
⇔ 12m2 ≥ 12
⇔ |m| ≥ 1
Vậy |m| ≥ 1 thì thỏa mãn yêu cầu bài toán.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số f(x) = ax4 + bx3 + cx2 (a, b, c ∈ ℝ). Hàm số y = f '(x) có đồ thị như trong hình bên. Số nghiệm thực phân biệt của phương trình 2f(x) + 3 = 0.
Câu 2:
Tìm m để đường thẳng y = mx + 1 cắt đồ thị hàm số \(y = \frac{{x + 1}}{{x - 1}}\) tại hai điểm thuộc nhánh của đồ thị.
Câu 3:
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Biết AB = BC = a, AD = 2a và SA vuông góc với mặt phẳng (ABCD) và \(SA = a\sqrt 2 \). Gọi M là trung điểm AD. Khoảng cách giữa hai đường thẳng BM và SC bằng
Câu 5:
Tìm số các nghiệm nguyên không âm (x; y; z) của phương trình x + y + z = 10.
Câu 6:
Cho hàm số y = f( x) có đạo hàm là hàm số y = f’(x) trên R. Biết rằng hàm số y = f ' (x – 2) + 2 có đồ thị như hình vẽ bên dưới. Hàm số y = f( x) nghịch biến trên khoảng nào?
về câu hỏi!