Câu hỏi:

15/08/2023 192

Gọi S là ập hợp tất cả các giá trị thực của tham số m sao cho giá trị lớn nhất của hàm số \(y = \left| {\frac{{{x^2} + mx + m}}{{}}x + 1} \right|\)  trên đoạn [1; 2] bằng 2. Số phần tử của tập S là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Xét hàm số \(y = f\left( x \right) = \frac{{{x^2} + mx + m}}{{x + 1}}\)

Ta có \(y' = \frac{{{x^2} + 2x}}{{{{\left( {x + 1} \right)}^2}}} = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 0 \notin \left[ {1;2} \right]\\x = - 2 \notin \left[ {1;2} \right]\end{array} \right.\)

Mặt khác \(f(1) = \frac{{2m + 1}}{2}\); \(f(2) = \frac{{3m + 4}}{3}\)

Do đó \(\max y = \max \left\{ {\left| {\frac{{2m + 1}}{2}} \right|;\,\,\left| {\frac{{3m + 4}}{3}} \right|} \right\}\)

TH1: \(\max y = \left| {\frac{{2m + 1}}{2}} \right| = 2 \Rightarrow \left[ \begin{array}{l}m = \frac{3}{2}\\m = - \frac{5}{2}\end{array} \right.\)

Với \(m = \frac{3}{2} \Rightarrow \left| {\frac{{3m + 4}}{3}} \right| = \frac{{17}}{6} > 2\) (loại)

Với \(m = - \frac{5}{2} \Rightarrow \left| {\frac{{3m + 4}}{3}} \right| = \frac{7}{6} < 2\) (thỏa mãn)

TH2: \(\max y = \left| {\frac{{3m + 4}}{3}} \right| = 2 \Leftrightarrow \left[ \begin{array}{l}m = \frac{2}{3}\\m = - \frac{{10}}{3}\end{array} \right.\)

Với \(m = \frac{2}{3} \Rightarrow \left| {\frac{{2m + 1}}{2}} \right| = \frac{7}{6} < 2\) (thỏa mãn)

Với \(m = - \frac{{10}}{3} \Rightarrow \left| {\frac{{2m + 1}}{2}} \right| = \frac{{17}}{6} > 2\) (loại)

Vậy có hai giá trị của m thỏa mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Từ đồ thị ta có bảng biến thiên:

Cho hàm số f(x) = ax^4 + bx^3 + cx^2 (a, b, c thuộc R). Hàm số y = f '(x) có đồ thị như  (ảnh 2)

Dựa vào bảng biến thiên thì phương trình 2f(x) + 3 = 0 \( \Leftrightarrow f(x) = - \frac{3}{2}\) có hai nghiệm phân biệt.

Câu 2

Lời giải

Đáp án đúng là: B

Phương trình hoành độ giao điểm là: \(mx + 1 = \frac{{x + 1}}{{x - 1}}\)

\( \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\\left( {mx + 1} \right)\left( {x - 1} \right) = x + 1\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\f(x) = m{x^2} - mx - 2 = 0\left( 1 \right)\end{array} \right.\)

Theo hệ thức Vi-ét có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 1\\{x_1}{x_2} = \frac{{ - 2}}{m}\end{array} \right.\)

Đường thẳng y = mx + 1 cắt đồ thị hàm số \(y = \frac{{x + 1}}{{x - 1}}\) tại hai điểm thuộc hai nhánh của đồ thị

Khi đó (1) có hai nghiệm phân biệt x1; x­2 khác 1 thỏa mãn (x1 – 1)(x2 – 1) < 0

\( \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\\Delta = {m^2} + 8m > 0\\f(1) \ne 0\\{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1 < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\\left[ \begin{array}{l}m > 0\\m < - 8\end{array} \right.\\m{.1^2} - m.1 - 2 \ne 0\\ - \frac{2}{m} - 1 + 1 < 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 0\\m < - 8\end{array} \right.\\\frac{2}{m} > 0\end{array} \right. \Leftrightarrow m > 0\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP