Câu hỏi:
15/08/2023 135Tập xác đinh của hàm số \(y = {\log _2}\left( {{2^x} - 2} \right) + {\log _{\sqrt 2 }}\frac{1}{{3 - {x^2}}}\) là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B.
Hàm số đã cho xác định khi:
\(\left\{ \begin{array}{l}{2^2} > 2\\\frac{1}{{3 - {x^2}}} > 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x > 1\\3 - {x^2} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 1\\ - \sqrt 3 < x < \sqrt 3 \end{array} \right.\)
\( \Leftrightarrow 1 < x < \sqrt 3 \).
Do đó tập xác định của hàm số đã cho là \(D = \left( {1;\sqrt 3 } \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số f(x) = ax4 + bx3 + cx2 (a, b, c ∈ ℝ). Hàm số y = f '(x) có đồ thị như trong hình bên. Số nghiệm thực phân biệt của phương trình 2f(x) + 3 = 0.
Câu 2:
Tìm m để đường thẳng y = mx + 1 cắt đồ thị hàm số \(y = \frac{{x + 1}}{{x - 1}}\) tại hai điểm thuộc nhánh của đồ thị.
Câu 3:
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Biết AB = BC = a, AD = 2a và SA vuông góc với mặt phẳng (ABCD) và \(SA = a\sqrt 2 \). Gọi M là trung điểm AD. Khoảng cách giữa hai đường thẳng BM và SC bằng
Câu 5:
Tìm số các nghiệm nguyên không âm (x; y; z) của phương trình x + y + z = 10.
Câu 6:
Cho hàm số y = f( x) có đạo hàm là hàm số y = f’(x) trên R. Biết rằng hàm số y = f ' (x – 2) + 2 có đồ thị như hình vẽ bên dưới. Hàm số y = f( x) nghịch biến trên khoảng nào?
về câu hỏi!