Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 1, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SC. Biết \(\frac{{{V_{S.AHB}}}}{{{V_{S.ACB}}}} = \frac{{16}}{{19}}\). Tính Thể tích của khối chóp S.ABC.
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 1, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SC. Biết \(\frac{{{V_{S.AHB}}}}{{{V_{S.ACB}}}} = \frac{{16}}{{19}}\). Tính Thể tích của khối chóp S.ABC.
Quảng cáo
Trả lời:

Gọi O là trung điểm của AB ⇒ SO ⊥ (ABC)
Ta có: SC ⊥ AH; SC ⊥ AB
Suy ra SC ⊥ (AHB) ⇒ SC ⊥ OH
Trong ∆SOC vuông tại O có:
SH.SC = SO2 \( \Rightarrow \frac{{SH}}{{SC}} = \frac{{S{O^2}}}{{S{C^2}}}\)
Ta có: \(\frac{{{V_{S.AHB}}}}{{{V_{S.ACB}}}} = \frac{{16}}{{19}}\)
\( \Leftrightarrow \frac{{SH}}{{SC}} = \frac{{16}}{{19}} \Leftrightarrow \frac{{S{O^2}}}{{S{C^2}}} = \frac{{16}}{{19}}\)
\( \Leftrightarrow \frac{{S{O^2}}}{{S{O^2} + \frac{3}{4}}} = \frac{{16}}{{19}} \Rightarrow SO = 2\)
Vậy \[V = \frac{1}{3}\,.\,{S_{ABC}}\,.\,SO = \frac{1}{3}\,.\,2\,.\,\frac{{\sqrt 3 }}{4} = \frac{{\sqrt 3 }}{6}\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Từ đồ thị ta có bảng biến thiên:

Dựa vào bảng biến thiên thì phương trình 2f(x) + 3 = 0 \( \Leftrightarrow f(x) = - \frac{3}{2}\) có hai nghiệm phân biệt.
Lời giải
Đáp án đúng là: B
Phương trình hoành độ giao điểm là: \(mx + 1 = \frac{{x + 1}}{{x - 1}}\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\\left( {mx + 1} \right)\left( {x - 1} \right) = x + 1\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\f(x) = m{x^2} - mx - 2 = 0\left( 1 \right)\end{array} \right.\)
Theo hệ thức Vi-ét có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 1\\{x_1}{x_2} = \frac{{ - 2}}{m}\end{array} \right.\)
Đường thẳng y = mx + 1 cắt đồ thị hàm số \(y = \frac{{x + 1}}{{x - 1}}\) tại hai điểm thuộc hai nhánh của đồ thị
Khi đó (1) có hai nghiệm phân biệt x1; x2 khác 1 thỏa mãn (x1 – 1)(x2 – 1) < 0
\( \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\\Delta = {m^2} + 8m > 0\\f(1) \ne 0\\{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1 < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\\left[ \begin{array}{l}m > 0\\m < - 8\end{array} \right.\\m{.1^2} - m.1 - 2 \ne 0\\ - \frac{2}{m} - 1 + 1 < 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 0\\m < - 8\end{array} \right.\\\frac{2}{m} > 0\end{array} \right. \Leftrightarrow m > 0\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.