Câu hỏi:

15/08/2023 251

Gọi S là tập hợp các số tự nhiên có ba chữ số (không nhất thiết khác nhau) được lập từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9. Chọn ngẫu nhiên một số \[\overline {abc} \] từ S. Tính xác suất để số được chọn thỏa mãn a ≤ bc.

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Số phần tử của không gian mẫu n(Ω) = 9.102 = 900.

Gọi biến cố A” Chọn được một số thỏa mãn a ≤ b ≤ c”.

Vì  mà  nên trong các chữ số sẽ không có số 0.

• TH1: Số được chọn có  chữ số giống nhau có 9 số.

• TH2: Số được chọn tạo bới hai chữ số khác nhau.

Số cách chọn ra 2 chữ số khác nhau từ 9 chữ số trên là: \(C_9^2\).

Mỗi bộ 2 chữ số được chọn tạo ra 2 số thỏa mãn yêu cầu.

Do đó có \(2.C_9^2\) số thỏa mãn.

• TH3: Số được chọn tạo bởi ba chữ số khác nhau.

Số cách chọn ra 3 chữ số khác nhau từ 9 chữ số trên là: \(C_9^3\) .

Mỗi bộ 3 chữ số được chọn chỉ tạo ra một số thỏa mãn yêu cầu.

Do đó có \(C_9^3\) số thỏa mãn.

Khi đó \(n(A) = 9 + 2.C_9^2 + C_9^3 = 165\).

Xác suất của biến cố A là: \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{165}}{{900}} = \frac{{11}}{{60}}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số f(x) = ax4 + bx3 + cx2 (a, b, c ℝ). Hàm số y = f '(x) có đồ thị như trong hình bên. Số nghiệm thực phân biệt của phương trình 2f(x) + 3 = 0.

Cho hàm số f(x) = ax^4 + bx^3 + cx^2 (a, b, c thuộc R). Hàm số y = f '(x) có đồ thị như  (ảnh 1)

Xem đáp án » 15/08/2023 12,176

Câu 2:

Tìm m để đường thẳng y = mx + 1 cắt đồ thị hàm số \(y = \frac{{x + 1}}{{x - 1}}\) tại hai điểm thuộc nhánh của đồ thị.

Xem đáp án » 15/08/2023 5,775

Câu 3:

Trong  không gian với hệ tọa độ Oxyz, mặt phẳng (P) cắt ba trục Ox, Oy, Oz tại A, B, C; trực tâm tam giác ABC là H(1; 2; 3). Phương trình của mặt phẳng (P) là:

Xem đáp án » 15/08/2023 4,161

Câu 4:

Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Biết AB = BC = a, AD = 2a và SA vuông góc với mặt phẳng (ABCD) và \(SA = a\sqrt 2 \). Gọi M là trung điểm AD. Khoảng cách giữa hai đường thẳng BM và SC bằng

Xem đáp án » 15/08/2023 3,614

Câu 5:

Cho hình vuông ABCD có cạnh bằng a và có diện tích S1. Nối 4 điểm A1; B1; C1; D1 theo thứ tự của 4 cạnh AB, BC, CD, DA ta được hình vuông thứ hai có diện tích S2. Tiếp tục làm như thế, ta được hình vuông thứ ba là A2B2C2D2 có diện tích S3, … và cứ tiếp tục làm như thế, ta tính được các hình vuông lần lượt có diện tích, … , S100 (tham khảo hình bên). Tính tổng S = S1 + S2 + S3 + … + S100.

Cho hình vuông ABCD có cạnh bằng a và có diện tích S1. Nối 4 điểm A1; B1; C1 (ảnh 1)

Xem đáp án » 13/07/2024 3,112

Câu 6:

Tìm số các nghiệm nguyên không âm (x; y; z) của phương trình x + y + z = 10.

Xem đáp án » 15/08/2023 2,973

Câu 7:

Tìm tập xác định D của hàm số y = ln(x – 1).

Xem đáp án » 15/08/2023 2,674