Câu hỏi:

15/08/2023 412

Gọi S là tập hợp các số tự nhiên có ba chữ số (không nhất thiết khác nhau) được lập từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9. Chọn ngẫu nhiên một số \[\overline {abc} \] từ S. Tính xác suất để số được chọn thỏa mãn a ≤ bc.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Số phần tử của không gian mẫu n(Ω) = 9.102 = 900.

Gọi biến cố A” Chọn được một số thỏa mãn a ≤ b ≤ c”.

Vì  mà  nên trong các chữ số sẽ không có số 0.

• TH1: Số được chọn có  chữ số giống nhau có 9 số.

• TH2: Số được chọn tạo bới hai chữ số khác nhau.

Số cách chọn ra 2 chữ số khác nhau từ 9 chữ số trên là: \(C_9^2\).

Mỗi bộ 2 chữ số được chọn tạo ra 2 số thỏa mãn yêu cầu.

Do đó có \(2.C_9^2\) số thỏa mãn.

• TH3: Số được chọn tạo bởi ba chữ số khác nhau.

Số cách chọn ra 3 chữ số khác nhau từ 9 chữ số trên là: \(C_9^3\) .

Mỗi bộ 3 chữ số được chọn chỉ tạo ra một số thỏa mãn yêu cầu.

Do đó có \(C_9^3\) số thỏa mãn.

Khi đó \(n(A) = 9 + 2.C_9^2 + C_9^3 = 165\).

Xác suất của biến cố A là: \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{165}}{{900}} = \frac{{11}}{{60}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Từ đồ thị ta có bảng biến thiên:

Cho hàm số f(x) = ax^4 + bx^3 + cx^2 (a, b, c thuộc R). Hàm số y = f '(x) có đồ thị như  (ảnh 2)

Dựa vào bảng biến thiên thì phương trình 2f(x) + 3 = 0 \( \Leftrightarrow f(x) = - \frac{3}{2}\) có hai nghiệm phân biệt.

Câu 2

Lời giải

Đáp án đúng là: B

Phương trình hoành độ giao điểm là: \(mx + 1 = \frac{{x + 1}}{{x - 1}}\)

\( \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\\left( {mx + 1} \right)\left( {x - 1} \right) = x + 1\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\f(x) = m{x^2} - mx - 2 = 0\left( 1 \right)\end{array} \right.\)

Theo hệ thức Vi-ét có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 1\\{x_1}{x_2} = \frac{{ - 2}}{m}\end{array} \right.\)

Đường thẳng y = mx + 1 cắt đồ thị hàm số \(y = \frac{{x + 1}}{{x - 1}}\) tại hai điểm thuộc hai nhánh của đồ thị

Khi đó (1) có hai nghiệm phân biệt x1; x­2 khác 1 thỏa mãn (x1 – 1)(x2 – 1) < 0

\( \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\\Delta = {m^2} + 8m > 0\\f(1) \ne 0\\{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1 < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\\left[ \begin{array}{l}m > 0\\m < - 8\end{array} \right.\\m{.1^2} - m.1 - 2 \ne 0\\ - \frac{2}{m} - 1 + 1 < 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 0\\m < - 8\end{array} \right.\\\frac{2}{m} > 0\end{array} \right. \Leftrightarrow m > 0\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP