Câu hỏi:
13/07/2024 1,588Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), tam giác ABC vuông tại B. Biết SA = 2a, AB = a, \(BC = a\sqrt 3 \). Tính bán kính R của mặt cầu ngoại tiếp hình chóp đã cho.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Gọi O, I lần lượt là trung điểm của AC và SC.
Khi đó OI là đường trung bình của tam giác SAC nên OI // SA.
Mà SA⊥(ABC) nên OI ⊥ (ABC).
Tam giác ABC vuông tại B nên O là tâm đường tròn ngoại tiếp tam giác ABC.
Mà OI ⊥ (ABC) nên OI chính là trục của (ABC) suy ra IA = IB = IC (1).
Lại có SA ⊥ (ABC) nên SA ⊥ AC.
Do đó tam giác SAC vuông tại A nên I chính là tâm đường tròn ngoại tiếp tam giác SAC, suy ra IS = IA = IC (2).
Từ (1) và (2) ta có IA = IB = IC = IS, hay I là tâm mặt cầu ngoại tiếp chóp S.ABC và bán kính mặt cầu là \(R = IS = \frac{1}{2}SC\).
Áp dụng định lý Py-ta-go trong tam giác vuông ABC, ta có:
\(AC = \sqrt {A{B^2} + B{C^2}} = 2a\).
Áp dụng định lí Py-ta-go trong tam giác vuông SAC, ta có:
\(SC = \sqrt {S{A^2} + A{C^2}} = 2a\sqrt 2 \)
Vậy \(R = \frac{1}{2}SC = a\sqrt 2 \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số f(x) = ax4 + bx3 + cx2 (a, b, c ∈ ℝ). Hàm số y = f '(x) có đồ thị như trong hình bên. Số nghiệm thực phân biệt của phương trình 2f(x) + 3 = 0.
Câu 2:
Tìm m để đường thẳng y = mx + 1 cắt đồ thị hàm số \(y = \frac{{x + 1}}{{x - 1}}\) tại hai điểm thuộc nhánh của đồ thị.
Câu 3:
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Biết AB = BC = a, AD = 2a và SA vuông góc với mặt phẳng (ABCD) và \(SA = a\sqrt 2 \). Gọi M là trung điểm AD. Khoảng cách giữa hai đường thẳng BM và SC bằng
Câu 4:
Cho hình vuông ABCD có cạnh bằng a và có diện tích S1. Nối 4 điểm A1; B1; C1; D1 theo thứ tự của 4 cạnh AB, BC, CD, DA ta được hình vuông thứ hai có diện tích S2. Tiếp tục làm như thế, ta được hình vuông thứ ba là A2B2C2D2 có diện tích S3, … và cứ tiếp tục làm như thế, ta tính được các hình vuông lần lượt có diện tích, … , S100 (tham khảo hình bên). Tính tổng S = S1 + S2 + S3 + … + S100.
Câu 5:
Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) cắt ba trục Ox, Oy, Oz tại A, B, C; trực tâm tam giác ABC là H(1; 2; 3). Phương trình của mặt phẳng (P) là:
Câu 6:
Tìm số các nghiệm nguyên không âm (x; y; z) của phương trình x + y + z = 10.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
về câu hỏi!