Câu hỏi:
13/07/2024 2,425Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), tam giác ABC vuông tại B. Biết SA = 2a, AB = a, \(BC = a\sqrt 3 \). Tính bán kính R của mặt cầu ngoại tiếp hình chóp đã cho.
Quảng cáo
Trả lời:
Gọi O, I lần lượt là trung điểm của AC và SC.
Khi đó OI là đường trung bình của tam giác SAC nên OI // SA.
Mà SA⊥(ABC) nên OI ⊥ (ABC).
Tam giác ABC vuông tại B nên O là tâm đường tròn ngoại tiếp tam giác ABC.
Mà OI ⊥ (ABC) nên OI chính là trục của (ABC) suy ra IA = IB = IC (1).
Lại có SA ⊥ (ABC) nên SA ⊥ AC.
Do đó tam giác SAC vuông tại A nên I chính là tâm đường tròn ngoại tiếp tam giác SAC, suy ra IS = IA = IC (2).
Từ (1) và (2) ta có IA = IB = IC = IS, hay I là tâm mặt cầu ngoại tiếp chóp S.ABC và bán kính mặt cầu là \(R = IS = \frac{1}{2}SC\).
Áp dụng định lý Py-ta-go trong tam giác vuông ABC, ta có:
\(AC = \sqrt {A{B^2} + B{C^2}} = 2a\).
Áp dụng định lí Py-ta-go trong tam giác vuông SAC, ta có:
\(SC = \sqrt {S{A^2} + A{C^2}} = 2a\sqrt 2 \)
Vậy \(R = \frac{1}{2}SC = a\sqrt 2 \).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Từ đồ thị ta có bảng biến thiên:
Dựa vào bảng biến thiên thì phương trình 2f(x) + 3 = 0 \( \Leftrightarrow f(x) = - \frac{3}{2}\) có hai nghiệm phân biệt.
Lời giải
Đáp án đúng là: B
Phương trình hoành độ giao điểm là: \(mx + 1 = \frac{{x + 1}}{{x - 1}}\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\\left( {mx + 1} \right)\left( {x - 1} \right) = x + 1\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\f(x) = m{x^2} - mx - 2 = 0\left( 1 \right)\end{array} \right.\)
Theo hệ thức Vi-ét có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 1\\{x_1}{x_2} = \frac{{ - 2}}{m}\end{array} \right.\)
Đường thẳng y = mx + 1 cắt đồ thị hàm số \(y = \frac{{x + 1}}{{x - 1}}\) tại hai điểm thuộc hai nhánh của đồ thị
Khi đó (1) có hai nghiệm phân biệt x1; x2 khác 1 thỏa mãn (x1 – 1)(x2 – 1) < 0
\( \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\\Delta = {m^2} + 8m > 0\\f(1) \ne 0\\{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1 < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\\left[ \begin{array}{l}m > 0\\m < - 8\end{array} \right.\\m{.1^2} - m.1 - 2 \ne 0\\ - \frac{2}{m} - 1 + 1 < 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 0\\m < - 8\end{array} \right.\\\frac{2}{m} > 0\end{array} \right. \Leftrightarrow m > 0\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận