Câu hỏi:

15/08/2023 2,177

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết SA (ABC) và SB với đáy một góc 60. Thể tích khối chóp S.ABC là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A.             

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết  (ảnh 1)

Vì SA vuông góc với (ABC)

A là hình chiếu của S trên (ABC)

AB là hình chiếu của SB trên (ABC)

(SB, (ABC)) = (SB, AB) \( = \widehat {SBA} = 60^\circ \)

Tam giác vuông cân ABC tại B

\(AB = BC = AC.\sin 45^\circ = AC.\frac{{\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{2}\)

Tam giác SAB vuông tại A

\( \Rightarrow SA = AB.\tan \widehat {SBA} = \frac{{a\sqrt 2 }}{2}.\tan 60^\circ = \frac{{a\sqrt 6 }}{2}\)

Thể tích khối chóp S.ABC là:

\(V = \frac{1}{3}.{S_{ABC}}.SA = \frac{1}{3}.\left( {\frac{1}{2}.\frac{{a\sqrt 2 }}{2}.\frac{{a\sqrt 2 }}{2}} \right).\frac{{a\sqrt 6 }}{2} = \frac{{{a^3}\sqrt 6 }}{{24}}\).

                   

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Từ đồ thị ta có bảng biến thiên:

Cho hàm số f(x) = ax^4 + bx^3 + cx^2 (a, b, c thuộc R). Hàm số y = f '(x) có đồ thị như  (ảnh 2)

Dựa vào bảng biến thiên thì phương trình 2f(x) + 3 = 0 \( \Leftrightarrow f(x) = - \frac{3}{2}\) có hai nghiệm phân biệt.

Câu 2

Lời giải

Đáp án đúng là: B

Phương trình hoành độ giao điểm là: \(mx + 1 = \frac{{x + 1}}{{x - 1}}\)

\( \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\\left( {mx + 1} \right)\left( {x - 1} \right) = x + 1\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\f(x) = m{x^2} - mx - 2 = 0\left( 1 \right)\end{array} \right.\)

Theo hệ thức Vi-ét có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 1\\{x_1}{x_2} = \frac{{ - 2}}{m}\end{array} \right.\)

Đường thẳng y = mx + 1 cắt đồ thị hàm số \(y = \frac{{x + 1}}{{x - 1}}\) tại hai điểm thuộc hai nhánh của đồ thị

Khi đó (1) có hai nghiệm phân biệt x1; x­2 khác 1 thỏa mãn (x1 – 1)(x2 – 1) < 0

\( \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\\Delta = {m^2} + 8m > 0\\f(1) \ne 0\\{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1 < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\\left[ \begin{array}{l}m > 0\\m < - 8\end{array} \right.\\m{.1^2} - m.1 - 2 \ne 0\\ - \frac{2}{m} - 1 + 1 < 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 0\\m < - 8\end{array} \right.\\\frac{2}{m} > 0\end{array} \right. \Leftrightarrow m > 0\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP