Câu hỏi:
13/07/2024 778Cho hình chóp S.ABC có đáy là tam giác đều cạnh 1, tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích của khối cầu ngoại tiếp hình chóp đã cho.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi H là trung điểm của AB. Khi đó SH ⊥ (SAB).
Gọi O là tâm đường tròn ngoại tiếp tam giác ABC, dựng đường thẳng d đi qua O và vuông góc với (ABC).
Khi đó d // SH
Dựng đường trung trực của (SAB), cắt d tại I.
Khi đó I là tâm mặt cầu ngoại tiếp hình chóp SABC.
Gọi K là giao điểm của SH và mặt phẳng trung trực của (SAB).
Do đó tứ giác IKHO là hình chữ nhật, K là trọng tâm tam giác SAB.
Khi đó: R = SI = IA = IB = IC là bán kính mặt cầu ngoại tiếp hình chóp SABC.
• Tam giác ABC đều có cạnh là 1 nên \(CH = \frac{{\sqrt 3 }}{2} \Rightarrow OC = \frac{2}{3}CH = \frac{{\sqrt 3 }}{3}\).
• Tam giác SAB đều có cạnh là 1 nên \(SH = \frac{{\sqrt 3 }}{2} \Rightarrow HK = \frac{1}{3}SH = \frac{{\sqrt 3 }}{6} = IO\)
Xét tam giác IOC vuông tại O ta có:
\(IC = \sqrt {O{I^2} + O{C^2}} = \sqrt {\frac{3}{{36}} + \frac{1}{3}} = \sqrt {\frac{5}{{12}}} = \frac{{\sqrt {15} }}{6}\).
Vậy \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi .{\left( {\frac{{\sqrt {15} }}{3}} \right)^3} = \frac{{5\pi \sqrt {15} }}{{54}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số f(x) = ax4 + bx3 + cx2 (a, b, c ∈ ℝ). Hàm số y = f '(x) có đồ thị như trong hình bên. Số nghiệm thực phân biệt của phương trình 2f(x) + 3 = 0.
Câu 2:
Tìm m để đường thẳng y = mx + 1 cắt đồ thị hàm số \(y = \frac{{x + 1}}{{x - 1}}\) tại hai điểm thuộc nhánh của đồ thị.
Câu 3:
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Biết AB = BC = a, AD = 2a và SA vuông góc với mặt phẳng (ABCD) và \(SA = a\sqrt 2 \). Gọi M là trung điểm AD. Khoảng cách giữa hai đường thẳng BM và SC bằng
Câu 5:
Tìm số các nghiệm nguyên không âm (x; y; z) của phương trình x + y + z = 10.
Câu 6:
Cho hàm số y = f( x) có đạo hàm là hàm số y = f’(x) trên R. Biết rằng hàm số y = f ' (x – 2) + 2 có đồ thị như hình vẽ bên dưới. Hàm số y = f( x) nghịch biến trên khoảng nào?
về câu hỏi!