Câu hỏi:

13/07/2024 1,101

Cho hình chóp S.ABC có đáy là tam giác đều cạnh 1, tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích của khối cầu ngoại tiếp hình chóp đã cho.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABC có đáy là tam giác đều cạnh 1, tam giác SAB đều và nằm trong mặt (ảnh 1)

Gọi H là trung điểm của AB. Khi đó SH (SAB).

Gọi O là tâm đường tròn ngoại tiếp tam giác ABC, dựng đường thẳng d đi qua O và vuông góc với (ABC).

Khi đó d // SH

Dựng đường trung trực của (SAB), cắt d tại I.

Khi đó I là tâm mặt cầu ngoại tiếp hình chóp SABC.

Gọi K là giao điểm của SH và mặt phẳng trung trực của (SAB).

Do đó tứ giác IKHO là hình chữ nhật, K là trọng tâm tam giác SAB.

Khi đó: R = SI = IA = IB = IC là bán kính mặt cầu ngoại tiếp hình chóp SABC.

• Tam giác ABC đều có cạnh là 1 nên \(CH = \frac{{\sqrt 3 }}{2} \Rightarrow OC = \frac{2}{3}CH = \frac{{\sqrt 3 }}{3}\).

• Tam giác SAB đều có cạnh là 1 nên \(SH = \frac{{\sqrt 3 }}{2} \Rightarrow HK = \frac{1}{3}SH = \frac{{\sqrt 3 }}{6} = IO\)

Xét tam giác IOC vuông tại O ta có:

\(IC = \sqrt {O{I^2} + O{C^2}} = \sqrt {\frac{3}{{36}} + \frac{1}{3}} = \sqrt {\frac{5}{{12}}} = \frac{{\sqrt {15} }}{6}\).

Vậy \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi .{\left( {\frac{{\sqrt {15} }}{3}} \right)^3} = \frac{{5\pi \sqrt {15} }}{{54}}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số f(x) = ax4 + bx3 + cx2 (a, b, c ℝ). Hàm số y = f '(x) có đồ thị như trong hình bên. Số nghiệm thực phân biệt của phương trình 2f(x) + 3 = 0.

Cho hàm số f(x) = ax^4 + bx^3 + cx^2 (a, b, c thuộc R). Hàm số y = f '(x) có đồ thị như  (ảnh 1)

Xem đáp án » 15/08/2023 12,420

Câu 2:

Tìm m để đường thẳng y = mx + 1 cắt đồ thị hàm số \(y = \frac{{x + 1}}{{x - 1}}\) tại hai điểm thuộc nhánh của đồ thị.

Xem đáp án » 15/08/2023 6,000

Câu 3:

Trong  không gian với hệ tọa độ Oxyz, mặt phẳng (P) cắt ba trục Ox, Oy, Oz tại A, B, C; trực tâm tam giác ABC là H(1; 2; 3). Phương trình của mặt phẳng (P) là:

Xem đáp án » 15/08/2023 4,993

Câu 4:

Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Biết AB = BC = a, AD = 2a và SA vuông góc với mặt phẳng (ABCD) và \(SA = a\sqrt 2 \). Gọi M là trung điểm AD. Khoảng cách giữa hai đường thẳng BM và SC bằng

Xem đáp án » 15/08/2023 3,948

Câu 5:

Tìm số các nghiệm nguyên không âm (x; y; z) của phương trình x + y + z = 10.

Xem đáp án » 15/08/2023 3,289

Câu 6:

Cho hình vuông ABCD có cạnh bằng a và có diện tích S1. Nối 4 điểm A1; B1; C1; D1 theo thứ tự của 4 cạnh AB, BC, CD, DA ta được hình vuông thứ hai có diện tích S2. Tiếp tục làm như thế, ta được hình vuông thứ ba là A2B2C2D2 có diện tích S3, … và cứ tiếp tục làm như thế, ta tính được các hình vuông lần lượt có diện tích, … , S100 (tham khảo hình bên). Tính tổng S = S1 + S2 + S3 + … + S100.

Cho hình vuông ABCD có cạnh bằng a và có diện tích S1. Nối 4 điểm A1; B1; C1 (ảnh 1)

Xem đáp án » 13/07/2024 3,184

Câu 7:

Tìm tập xác định D của hàm số y = ln(x – 1).

Xem đáp án » 15/08/2023 2,850
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua