Câu hỏi:
13/07/2024 956Cho hình chóp S.ABC có đáy là tam giác đều cạnh 1, tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích của khối cầu ngoại tiếp hình chóp đã cho.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Gọi H là trung điểm của AB. Khi đó SH ⊥ (SAB).
Gọi O là tâm đường tròn ngoại tiếp tam giác ABC, dựng đường thẳng d đi qua O và vuông góc với (ABC).
Khi đó d // SH
Dựng đường trung trực của (SAB), cắt d tại I.
Khi đó I là tâm mặt cầu ngoại tiếp hình chóp SABC.
Gọi K là giao điểm của SH và mặt phẳng trung trực của (SAB).
Do đó tứ giác IKHO là hình chữ nhật, K là trọng tâm tam giác SAB.
Khi đó: R = SI = IA = IB = IC là bán kính mặt cầu ngoại tiếp hình chóp SABC.
• Tam giác ABC đều có cạnh là 1 nên \(CH = \frac{{\sqrt 3 }}{2} \Rightarrow OC = \frac{2}{3}CH = \frac{{\sqrt 3 }}{3}\).
• Tam giác SAB đều có cạnh là 1 nên \(SH = \frac{{\sqrt 3 }}{2} \Rightarrow HK = \frac{1}{3}SH = \frac{{\sqrt 3 }}{6} = IO\)
Xét tam giác IOC vuông tại O ta có:
\(IC = \sqrt {O{I^2} + O{C^2}} = \sqrt {\frac{3}{{36}} + \frac{1}{3}} = \sqrt {\frac{5}{{12}}} = \frac{{\sqrt {15} }}{6}\).
Vậy \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi .{\left( {\frac{{\sqrt {15} }}{3}} \right)^3} = \frac{{5\pi \sqrt {15} }}{{54}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số f(x) = ax4 + bx3 + cx2 (a, b, c ∈ ℝ). Hàm số y = f '(x) có đồ thị như trong hình bên. Số nghiệm thực phân biệt của phương trình 2f(x) + 3 = 0.
Câu 2:
Tìm m để đường thẳng y = mx + 1 cắt đồ thị hàm số \(y = \frac{{x + 1}}{{x - 1}}\) tại hai điểm thuộc nhánh của đồ thị.
Câu 3:
Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) cắt ba trục Ox, Oy, Oz tại A, B, C; trực tâm tam giác ABC là H(1; 2; 3). Phương trình của mặt phẳng (P) là:
Câu 4:
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Biết AB = BC = a, AD = 2a và SA vuông góc với mặt phẳng (ABCD) và \(SA = a\sqrt 2 \). Gọi M là trung điểm AD. Khoảng cách giữa hai đường thẳng BM và SC bằng
Câu 5:
Cho hình vuông ABCD có cạnh bằng a và có diện tích S1. Nối 4 điểm A1; B1; C1; D1 theo thứ tự của 4 cạnh AB, BC, CD, DA ta được hình vuông thứ hai có diện tích S2. Tiếp tục làm như thế, ta được hình vuông thứ ba là A2B2C2D2 có diện tích S3, … và cứ tiếp tục làm như thế, ta tính được các hình vuông lần lượt có diện tích, … , S100 (tham khảo hình bên). Tính tổng S = S1 + S2 + S3 + … + S100.
Câu 6:
Tìm số các nghiệm nguyên không âm (x; y; z) của phương trình x + y + z = 10.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận