Câu hỏi:

15/08/2023 258

Số nghiệm của phương trình \({\log _3}x = {\log _2}\left( {1 + \sqrt x } \right)\)

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

ĐK: x > 0.

Đặt \(t = {\log _3}x = {\log _2}\left( {1 + \sqrt x } \right)\) (vì \(1 + \sqrt x > 1\) \(t = {\log _2}\left( {1 + \sqrt x } \right) > 0\))

\(\left\{ {\begin{array}{*{20}{c}}{x = {3^t}}\\{1 + \sqrt x = {2^t}}\end{array}} \right.\) \(\left\{ {\begin{array}{*{20}{c}}{x = {3^t}}\\{x = {{\left( {{2^t} - 1} \right)}^2}}\end{array}} \right.\)

\({3^t} = {\left( {{2^t} - 1} \right)^2}\) \({3^t} = {4^t} - {2.2^t} + 1\) \({\left( {\frac{3}{4}} \right)^t} = 1 - 2.{\left( {\frac{1}{2}} \right)^t} + {\left( {\frac{1}{4}} \right)^t}\)

\({\left( {\frac{3}{4}} \right)^t} + 2.{\left( {\frac{1}{2}} \right)^t} - {\left( {\frac{1}{4}} \right)^t} = 1\)

Xét hàm số \(f\left( t \right) = {\left( {\frac{3}{4}} \right)^t} + 2.{\left( {\frac{1}{2}} \right)^t} - {\left( {\frac{1}{4}} \right)^t}\) trên (0; +∞) có:

\(f'\left( t \right) = {\left( {\frac{3}{4}} \right)^t}\ln \frac{3}{4} + 2{\left( {\frac{1}{2}} \right)^t}\ln \frac{1}{2} - {\left( {\frac{1}{4}} \right)^t}\ln \frac{1}{4}\)

\( = {\left( {\frac{3}{4}} \right)^t}\ln \frac{3}{4} + 2{\left( {\frac{1}{2}} \right)^t}\ln \frac{1}{2} + 2.{\left( {\frac{1}{4}} \right)^t}\ln \frac{1}{2}\)

\(\ln \frac{3}{4} < 0,\,\,\ln \frac{1}{2} < 0\) nên \(f'\left( t \right) < 0,\) t > 0.

Do đó hàm số f(t) nghịch biến trên (0; +∞).

Dễ thấy f(2) = 1 nên phương trình f(t) = 1 có nghiệm duy nhất t = 2.

Suy ra \({\log _3}x = 2\) x = 9.

Vậy phương trình có nghiệm duy nhất x = 9.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi S là tập hợp các số tự nhiên có hai chữ số. Chọn ngẫu nhiên đồng thời hai số từ tập hợp S. tính xác suất để hai số được chọn có chữ số hàng đơn vị giống nhau.

Xem đáp án » 15/08/2023 23,620

Câu 2:

Trên một kệ sách có 5 quyển sách Toán, 4 quyển sách Lí, 3 quyển sách Văn. Các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp các quyển sách trên:

a) Một cách tuỳ ý?

b) Theo từng môn và sách Toán nằm ở giữa?

Xem đáp án » 13/07/2024 12,481

Câu 3:

Từ 1 điểm A nằm ngoài đường tròn (O; R), kẻ 2 tiếp tuyến AB, AC với (O; R) (B và C là 2 tiếp điểm).

a) Chứng minh 4 điểm A, B, O, C cùng thuộc 1 đường tròn và AO BC tại H.

b) Vẽ đường kính BD. Đường thẳng qua O và vuông góc với AD cắt tia BC tại E. Chứng minh: DC // OA.

Xem đáp án » 13/07/2024 7,385

Câu 4:

Cho tam giác đều ABC tâm O, M là điểm bất kỳ trong tam giác. Hình chiếu của M xuống ba cạnh của tam giác lần lượt là D, E, F. Hệ thức giữa các vectơ \(\overrightarrow {MD} ,\overrightarrow {ME} ,\)\[\overrightarrow {MF} ,\] \(\overrightarrow {MO} \) là gì?

Xem đáp án » 15/08/2023 7,173

Câu 5:

Tìm tọa độ giao điểm của đồ thị hai hàm số y = -x2 và y = x – 2.

Xem đáp án » 13/07/2024 5,856

Câu 6:

Cho phương trình \(\left( {2\log _3^2x - {{\log }_3}x - 1} \right)\sqrt {{5^x} - m} = 0\) (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng hai nghiệm phân biệt?

Xem đáp án » 13/07/2024 5,416

Câu 7:

Tìm giá trị nhỏ nhất của hàm số \(y = 3x + \frac{4}{{{x^2}}}\) trên khoảng (0; +∞).

Xem đáp án » 13/07/2024 5,055
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua