Câu hỏi:

13/07/2024 1,984

Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a và \(\widehat {SBA} = \widehat {SCA} = 90^\circ .\) Biết góc giữa SA và mặt đáy bằng \(45^\circ .\) Tính khoảng cách giữa hai đường thẳng SB và AC.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a và góc SBA = góc SCA (ảnh 1)

Trong ∆ABC gọi I là trung điểm của BC.

Gọi AH là đường kính đường tròn ngoại tiếp ∆ABC.

Suy ra HB AB, HC AC.

Ta có: \(\left\{ {\begin{array}{*{20}{c}}{BH \bot AB}\\{SB \bot AB}\end{array}} \right.\) AB (SBH) AB SH.

Chứng minh tương tự ta có: AC SH.

Suy ra SH (ABC)

Trong ∆ABC kẻ đường thẳng qua B song song với AC cắt HC tại M.

Ta có: AC // BM d(SB; AC) = d(AC; (SBM)) = d(C; (SBM)).

Ta có CH AC CM BM.

Xét tam giác vuông ACH có: \(CH = AC.\tan 30^\circ = \frac{{a\sqrt 3 }}{3}.\)

Xét tam giác vuông BCM có: \(CM = BC.\cos 30^\circ = \frac{{a\sqrt 3 }}{2}.\)

CH ∩ (SBM) = M \(\frac{{d\left( {H;\left( {SBM} \right)} \right)}}{{d\left( {C;\left( {SBM} \right)} \right)}} = \frac{{HM}}{{CM}} = 1 - \frac{{CH}}{{CM}} = 1 - \frac{{\frac{{a\sqrt 3 }}{3}}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{1}{3}\)

Trong ∆SHM kẻ HK SM (K SM) ta có:

\(\left\{ {\begin{array}{*{20}{c}}{BM \bot HM}\\{BM \bot SH}\end{array}} \right.\) BM (SHM) BM HK

\(\left\{ {\begin{array}{*{20}{c}}{HK \bot BM}\\{HK \bot SM}\end{array}} \right.\) HK (SBM) d(H; (SBM)) = HK

Ta có: \(\left( {\widehat {SA;\left( {ABC} \right)}} \right) = \left( {\widehat {SA;HA}} \right) = \widehat {SAH} = 45^\circ \)

∆SAH vuông cân tại H

\(SH = AH = \frac{{AC}}{{\cos 30^\circ }} = \frac{{2a\sqrt 3 }}{3}\); \(HM = \frac{1}{3}CM = \frac{{a\sqrt 3 }}{6}.\)

Áp dụng hệ thức lượng trong tam giác vuông SHM ta có:

\(HK = \frac{{SH\,.\,HM}}{{\sqrt {S{H^2} + H{M^2}} }} = \frac{{\frac{{2a\sqrt 3 }}{3} \cdot \frac{{a\sqrt 3 }}{6}}}{{\sqrt {\frac{{12{a^2}}}{9} + \frac{{3{a^2}}}{{36}}} }} = \frac{{\frac{{{a^2}}}{3}}}{{\frac{{a\sqrt {51} }}{6}}} = \frac{{2a\sqrt {51} }}{{51}}.\)

Vậy \(d\left( {SB;AC} \right) = \frac{{2a\sqrt {51} }}{{17}}.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi S là tập hợp các số tự nhiên có hai chữ số. Chọn ngẫu nhiên đồng thời hai số từ tập hợp S. tính xác suất để hai số được chọn có chữ số hàng đơn vị giống nhau.

Xem đáp án » 15/08/2023 17,331

Câu 2:

Trên một kệ sách có 5 quyển sách Toán, 4 quyển sách Lí, 3 quyển sách Văn. Các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp các quyển sách trên:

a) Một cách tuỳ ý?

b) Theo từng môn và sách Toán nằm ở giữa?

Xem đáp án » 13/07/2024 8,579

Câu 3:

Cho tam giác đều ABC tâm O, M là điểm bất kỳ trong tam giác. Hình chiếu của M xuống ba cạnh của tam giác lần lượt là D, E, F. Hệ thức giữa các vectơ \(\overrightarrow {MD} ,\overrightarrow {ME} ,\)\[\overrightarrow {MF} ,\] \(\overrightarrow {MO} \) là gì?

Xem đáp án » 15/08/2023 7,069

Câu 4:

Tìm giá trị nhỏ nhất của hàm số \(y = 3x + \frac{4}{{{x^2}}}\) trên khoảng (0; +∞).

Xem đáp án » 13/07/2024 4,958

Câu 5:

Cho phương trình \(\left( {2\log _3^2x - {{\log }_3}x - 1} \right)\sqrt {{5^x} - m} = 0\) (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng hai nghiệm phân biệt?

Xem đáp án » 13/07/2024 4,878

Câu 6:

Tìm tọa độ giao điểm của đồ thị hai hàm số y = -x2 và y = x – 2.

Xem đáp án » 13/07/2024 4,853

Câu 7:

Từ 1 điểm A nằm ngoài đường tròn (O; R), kẻ 2 tiếp tuyến AB, AC với (O; R) (B và C là 2 tiếp điểm).

a) Chứng minh 4 điểm A, B, O, C cùng thuộc 1 đường tròn và AO BC tại H.

b) Vẽ đường kính BD. Đường thẳng qua O và vuông góc với AD cắt tia BC tại E. Chứng minh: DC // OA.

Xem đáp án » 13/07/2024 4,698