Câu hỏi:

15/08/2023 521

Trên một kệ sách có 5 quyển sách Toán, 4 quyển sách Lí, 3 quyển sách Văn. Các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp các quyển sách trên theo từng môn?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta phân nhóm mỗi loại sách theo từng môn, xếp 3 nhóm có 3!3! (cách).

Trong mỗi nhóm, ta xếp từng loại sách:

+)  Xếp sách Toán có 5! (cách).

+)  Xếp sách Lí có 4! (cách).

+)  Xếp sách Văn có 3! (cách).

Như vậy có 3!.5!.4!.3!=103680 (cách)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Số tự nhiên có 2 chữ số là: \(C_9^1.C_{10}^1 = 90\) (số).

\(\Omega :\) “Chọn ngẫu nhiên 2 số từ tập hợp S” \({n_\Omega } = C_{90}^2\)

A: “Chọn được 2 số có chữ số hàng đơn vị giống nhau”.

· TH1: Chữ số hàng đơn vị là 0 Có 9 chữ số là: 10; 20; 30; 40; 50; 60; 70; 80; 90.

 Số cách chọn 2 số là: \(C_9^2.\)

Tương tự với các số có chữ số hàng đơn vị là: 1; 2; 3; 4; 5; 6; 7; 8; 9.

 Có tất cả 10 trường hợp giống nhau.

\({n_A} = 10.C_9^2\)

\({P_A} = \frac{{10.C_9^2}}{{C_{90}^2}} = \frac{8}{{89}}.\)

Lời giải

a) Có tất cả 5 + 4 + 3 = 12 quyển sách.

Cách sắp xếp các quyển sách một cách tùy ý là: 12! (cách)

b) Chọn vị trí ở giữa cho 5 quyển sách Toán nên có số cách là 5! (cách)

Chọn vị trí đầu cho sách lý, có số cách là 4! (cách)

Chọn vị trí cuối cho sách văn, có số cách là 3! (cách)

Hoán đổi vị trí đầu và vị trí cuối nên thêm 2! (cách)

Vậy số cách sắp xếp các quyển sách trên theo từng môn và sách Toán nằm ở giữa là:

4!.5!.3!.2! = 34560 (cách)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP