Câu hỏi:

15/08/2023 1,270

Cho hình chóp S.ABCD có ABCD là hình thang, đáy lớn BC với BC = 2a, AD = AB = a, mặt bên (SAD) là tam giác đều. Lấy điểm M trên cạnh AB sao cho MB = 2AM. Mặt phẳng (α) đi qua M và song song với SA, BC. Xác định thiết diện của hình chóp bị cắt bởi mặt phẳng (α) và tính diện tích của thiết diện đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABCD có ABCD là hình thang, đáy lớn BC với BC = 2a, AD = AB = a (ảnh 1)

+) Dựng thiết diện:

Qua M kẻ MQ song song BC (Q DC), kẻ MN song song SA (N SB)

Qua N kẻ NP song song BC (P SC)

Khi đó, (MNPQ) là mặt phẳng qua M và song song BC, SA

(MNPQ) ≡ (α)

Thiết diện của hình chóp bị cắt bởi mặt phẳng (α) là tứ giác MNPQ.

+) Tính diện tích thiết diện:

Ta có: NP // MQ (cùng song song BC)  MNPQ là hình thang

ΔSAD đều  SA = SD = AD = a

ABCD là hình thang, MQ // BC \(\frac{{CQ}}{{DC}} = \frac{{BM}}{{AB}} = \frac{{BN}}{{SB}} = \frac{2}{3}\)

MN // SA \(\frac{{MN}}{{SA}} = \frac{{BM}}{{AB}} = \frac{2}{3}\) \(MN = \frac{2}{3}SA = \frac{2}{3}a\)

NP // BC \(\frac{{NP}}{{BC}} = \frac{1}{3}\) \(NP = \frac{1}{3}BC = \frac{2}{3}a\)\(\frac{{PC}}{{SC}} = \frac{{NB}}{{SB}} = \frac{2}{3}\) \(\frac{{PC}}{{SC}} = \frac{{CQ}}{{DC}} = \frac{2}{3}\)

\(\frac{{PQ}}{{SD}} = \frac{2}{3}\) \(PQ = \frac{2}{3}SD = \frac{2}{3}a.\)

Gọi I, J lần lượt là trung điểm của BM và CQ.

Giả sử MQ có độ dài bằng x. Khi đó, do IJ là đường trung bình của hình thang BCQM

\(IJ = \frac{{MQ + BC}}{2} = \frac{{x + 2a}}{2}\)

Do MQ là đường trung bình của hình thang IJDA 2MQ = IJ + AD

\(2x = \frac{{x + 2a}}{2} + a\) 4x = x + 2a + 2a \(x = \frac{4}{3}a\)

\(MQ = \frac{4}{3}a\)

Xét hình thang MNPQ có: NP = MN = PQ = \(\frac{2}{3}a,\) \(MQ = \frac{4}{3}a\) MNPQ là hình thang cân.

Kẻ MH, NK vuông góc với PQ (H, K PQ)

\(QH = PK = \frac{{PQ - MN}}{2} = \frac{{\frac{4}{3}a - \frac{2}{3}a}}{2} = \frac{a}{3}\)

\(MH = \sqrt {M{Q^2} - Q{H^2}} = \sqrt {{{\left( {\frac{2}{3}a} \right)}^2} - {{\left( {\frac{1}{3}a} \right)}^2}} = \sqrt {\frac{{{a^2}}}{3}} = \frac{{a\sqrt 3 }}{3}.\)

Diện tích hình thang MNPQ: \(S = \frac{1}{2}\left( {MN + PQ} \right).MH = \frac{1}{2}.\left( {\frac{2}{3}a + \frac{4}{3}a} \right).\frac{{a\sqrt 3 }}{3} = \frac{{{a^2}\sqrt 3 }}{3}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Số tự nhiên có 2 chữ số là: \(C_9^1.C_{10}^1 = 90\) (số).

\(\Omega :\) “Chọn ngẫu nhiên 2 số từ tập hợp S” \({n_\Omega } = C_{90}^2\)

A: “Chọn được 2 số có chữ số hàng đơn vị giống nhau”.

· TH1: Chữ số hàng đơn vị là 0 Có 9 chữ số là: 10; 20; 30; 40; 50; 60; 70; 80; 90.

 Số cách chọn 2 số là: \(C_9^2.\)

Tương tự với các số có chữ số hàng đơn vị là: 1; 2; 3; 4; 5; 6; 7; 8; 9.

 Có tất cả 10 trường hợp giống nhau.

\({n_A} = 10.C_9^2\)

\({P_A} = \frac{{10.C_9^2}}{{C_{90}^2}} = \frac{8}{{89}}.\)

Lời giải

a) Có tất cả 5 + 4 + 3 = 12 quyển sách.

Cách sắp xếp các quyển sách một cách tùy ý là: 12! (cách)

b) Chọn vị trí ở giữa cho 5 quyển sách Toán nên có số cách là 5! (cách)

Chọn vị trí đầu cho sách lý, có số cách là 4! (cách)

Chọn vị trí cuối cho sách văn, có số cách là 3! (cách)

Hoán đổi vị trí đầu và vị trí cuối nên thêm 2! (cách)

Vậy số cách sắp xếp các quyển sách trên theo từng môn và sách Toán nằm ở giữa là:

4!.5!.3!.2! = 34560 (cách)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP