Câu hỏi:
15/08/2023 1,227Cho hình chóp S.ABCD có ABCD là hình thang, đáy lớn BC với BC = 2a, AD = AB = a, mặt bên (SAD) là tam giác đều. Lấy điểm M trên cạnh AB sao cho MB = 2AM. Mặt phẳng (α) đi qua M và song song với SA, BC. Xác định thiết diện của hình chóp bị cắt bởi mặt phẳng (α) và tính diện tích của thiết diện đó.
Quảng cáo
Trả lời:
+) Dựng thiết diện:
Qua M kẻ MQ song song BC (Q ∈ DC), kẻ MN song song SA (N ∈ SB)
Qua N kẻ NP song song BC (P ∈ SC)
Khi đó, (MNPQ) là mặt phẳng qua M và song song BC, SA
⇒ (MNPQ) ≡ (α)
Thiết diện của hình chóp bị cắt bởi mặt phẳng (α) là tứ giác MNPQ.
+) Tính diện tích thiết diện:
Ta có: NP // MQ (cùng song song BC) ⇒ MNPQ là hình thang
ΔSAD đều ⇒ SA = SD = AD = a
ABCD là hình thang, MQ // BC ⇒ \(\frac{{CQ}}{{DC}} = \frac{{BM}}{{AB}} = \frac{{BN}}{{SB}} = \frac{2}{3}\)
MN // SA ⇒ \(\frac{{MN}}{{SA}} = \frac{{BM}}{{AB}} = \frac{2}{3}\) ⇒ \(MN = \frac{2}{3}SA = \frac{2}{3}a\)
NP // BC ⇒ \(\frac{{NP}}{{BC}} = \frac{1}{3}\) ⇒ \(NP = \frac{1}{3}BC = \frac{2}{3}a\) và \(\frac{{PC}}{{SC}} = \frac{{NB}}{{SB}} = \frac{2}{3}\) ⇒ \(\frac{{PC}}{{SC}} = \frac{{CQ}}{{DC}} = \frac{2}{3}\)
⇒ \(\frac{{PQ}}{{SD}} = \frac{2}{3}\) ⇒ \(PQ = \frac{2}{3}SD = \frac{2}{3}a.\)
Gọi I, J lần lượt là trung điểm của BM và CQ.
Giả sử MQ có độ dài bằng x. Khi đó, do IJ là đường trung bình của hình thang BCQM
⇒ \(IJ = \frac{{MQ + BC}}{2} = \frac{{x + 2a}}{2}\)
Do MQ là đường trung bình của hình thang IJDA ⇒ 2MQ = IJ + AD
⇔ \(2x = \frac{{x + 2a}}{2} + a\) ⇔ 4x = x + 2a + 2a ⇔ \(x = \frac{4}{3}a\)
⇒ \(MQ = \frac{4}{3}a\)
Xét hình thang MNPQ có: NP = MN = PQ = \(\frac{2}{3}a,\) \(MQ = \frac{4}{3}a\) ⇒ MNPQ là hình thang cân.
Kẻ MH, NK vuông góc với PQ (H, K ∈ PQ)
⇒ \(QH = PK = \frac{{PQ - MN}}{2} = \frac{{\frac{4}{3}a - \frac{2}{3}a}}{2} = \frac{a}{3}\)
⇒ \(MH = \sqrt {M{Q^2} - Q{H^2}} = \sqrt {{{\left( {\frac{2}{3}a} \right)}^2} - {{\left( {\frac{1}{3}a} \right)}^2}} = \sqrt {\frac{{{a^2}}}{3}} = \frac{{a\sqrt 3 }}{3}.\)
Diện tích hình thang MNPQ: \(S = \frac{1}{2}\left( {MN + PQ} \right).MH = \frac{1}{2}.\left( {\frac{2}{3}a + \frac{4}{3}a} \right).\frac{{a\sqrt 3 }}{3} = \frac{{{a^2}\sqrt 3 }}{3}.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Số tự nhiên có 2 chữ số là: \(C_9^1.C_{10}^1 = 90\) (số).
\(\Omega :\) “Chọn ngẫu nhiên 2 số từ tập hợp S” ⇒ \({n_\Omega } = C_{90}^2\)
A: “Chọn được 2 số có chữ số hàng đơn vị giống nhau”.
· TH1: Chữ số hàng đơn vị là 0 ⇒ Có 9 chữ số là: 10; 20; 30; 40; 50; 60; 70; 80; 90.
⇒ Số cách chọn 2 số là: \(C_9^2.\)
Tương tự với các số có chữ số hàng đơn vị là: 1; 2; 3; 4; 5; 6; 7; 8; 9.
⇒ Có tất cả 10 trường hợp giống nhau.
⇒ \({n_A} = 10.C_9^2\)
⇒ \({P_A} = \frac{{10.C_9^2}}{{C_{90}^2}} = \frac{8}{{89}}.\)
Lời giải
a) Có tất cả 5 + 4 + 3 = 12 quyển sách.
Cách sắp xếp các quyển sách một cách tùy ý là: 12! (cách)
b) Chọn vị trí ở giữa cho 5 quyển sách Toán nên có số cách là 5! (cách)
Chọn vị trí đầu cho sách lý, có số cách là 4! (cách)
Chọn vị trí cuối cho sách văn, có số cách là 3! (cách)
Hoán đổi vị trí đầu và vị trí cuối nên thêm 2! (cách)
Vậy số cách sắp xếp các quyển sách trên theo từng môn và sách Toán nằm ở giữa là:
4!.5!.3!.2! = 34560 (cách)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận