Cho ∆ABC có các tia phân giác của góc B và góc A cắt nhau tại điểm O. Qua O kẻ đường thẳng song song với BC cắt AB tại M, cắt AC tại N. Cho BM = 2cm, CN = 3cm. Tính MN.
Cho ∆ABC có các tia phân giác của góc B và góc A cắt nhau tại điểm O. Qua O kẻ đường thẳng song song với BC cắt AB tại M, cắt AC tại N. Cho BM = 2cm, CN = 3cm. Tính MN.
Quảng cáo
Trả lời:


Vì O là giao điểm của hai tia phân giác của \(\widehat {ABC}\) và \(\widehat {CAB}\) (gt).
Suy ra, CO là phân giác của \(\widehat {ACB}\) (tính chất 3 đường phân giác của tam giác)
⇒ \(\widehat {ACO} = \widehat {BCO}\) (1) (tính chất tia phân giác của một góc)
BO là phân giác của \(\widehat {ABC}\) (gt) ⇒ \(\widehat {OBA} = \widehat {OBC}\) (2) (tính chất tia phân giác của một góc)
Vì MN // BC (gt) ⇒ \(\left\{ {\begin{array}{*{20}{c}}{\widehat {MOB} = \widehat {OBC}\,\,\,\left( 3 \right)}\\{\widehat {NOC} = \widehat {OCB}\,\,\,\left( 4 \right)}\end{array}} \right.\) (so le trong)
Từ (1) và (4) suy ra \(\widehat {NOC} = \widehat {NCO}\)
⇒ ∆NOC cân tại N (dấu hiệu nhận biết tam giác cân)
⇒ NO = NC = 3 cm (tính chất tam giác cân)
Từ (2) và (3) ⇒ \(\widehat {MOB} = \widehat {MBO}\) ⇒ ∆MOB cân tại M (dấu hiệu nhận biết tam giác cân)
⇒ MB = MO = 2 cm (tính chất tam giác cân)
⇒ MN = MO + ON = 2 + 3 = 5 cm.
Vậy MN = 5 cm.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Số tự nhiên có 2 chữ số là: \(C_9^1.C_{10}^1 = 90\) (số).
\(\Omega :\) “Chọn ngẫu nhiên 2 số từ tập hợp S” ⇒ \({n_\Omega } = C_{90}^2\)
A: “Chọn được 2 số có chữ số hàng đơn vị giống nhau”.
· TH1: Chữ số hàng đơn vị là 0 ⇒ Có 9 chữ số là: 10; 20; 30; 40; 50; 60; 70; 80; 90.
⇒ Số cách chọn 2 số là: \(C_9^2.\)
Tương tự với các số có chữ số hàng đơn vị là: 1; 2; 3; 4; 5; 6; 7; 8; 9.
⇒ Có tất cả 10 trường hợp giống nhau.
⇒ \({n_A} = 10.C_9^2\)
⇒ \({P_A} = \frac{{10.C_9^2}}{{C_{90}^2}} = \frac{8}{{89}}.\)
Lời giải
a) Có tất cả 5 + 4 + 3 = 12 quyển sách.
Cách sắp xếp các quyển sách một cách tùy ý là: 12! (cách)
b) Chọn vị trí ở giữa cho 5 quyển sách Toán nên có số cách là 5! (cách)
Chọn vị trí đầu cho sách lý, có số cách là 4! (cách)
Chọn vị trí cuối cho sách văn, có số cách là 3! (cách)
Hoán đổi vị trí đầu và vị trí cuối nên thêm 2! (cách)
Vậy số cách sắp xếp các quyển sách trên theo từng môn và sách Toán nằm ở giữa là:
4!.5!.3!.2! = 34560 (cách)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.