Câu hỏi:
13/07/2024 779Cho ∆ABC có các tia phân giác của góc B và góc A cắt nhau tại điểm O. Qua O kẻ đường thẳng song song với BC cắt AB tại M, cắt AC tại N. Cho BM = 2cm, CN = 3cm. Tính MN.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Vì O là giao điểm của hai tia phân giác của \(\widehat {ABC}\) và \(\widehat {CAB}\) (gt).
Suy ra, CO là phân giác của \(\widehat {ACB}\) (tính chất 3 đường phân giác của tam giác)
⇒ \(\widehat {ACO} = \widehat {BCO}\) (1) (tính chất tia phân giác của một góc)
BO là phân giác của \(\widehat {ABC}\) (gt) ⇒ \(\widehat {OBA} = \widehat {OBC}\) (2) (tính chất tia phân giác của một góc)
Vì MN // BC (gt) ⇒ \(\left\{ {\begin{array}{*{20}{c}}{\widehat {MOB} = \widehat {OBC}\,\,\,\left( 3 \right)}\\{\widehat {NOC} = \widehat {OCB}\,\,\,\left( 4 \right)}\end{array}} \right.\) (so le trong)
Từ (1) và (4) suy ra \(\widehat {NOC} = \widehat {NCO}\)
⇒ ∆NOC cân tại N (dấu hiệu nhận biết tam giác cân)
⇒ NO = NC = 3 cm (tính chất tam giác cân)
Từ (2) và (3) ⇒ \(\widehat {MOB} = \widehat {MBO}\) ⇒ ∆MOB cân tại M (dấu hiệu nhận biết tam giác cân)
⇒ MB = MO = 2 cm (tính chất tam giác cân)
⇒ MN = MO + ON = 2 + 3 = 5 cm.
Vậy MN = 5 cm.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Tìm giá trị nhỏ nhất của hàm số \(y = 3x + \frac{4}{{{x^2}}}\) trên khoảng (0; +∞).
Câu 3:
Cho tam giác đều ABC tâm O, M là điểm bất kỳ trong tam giác. Hình chiếu của M xuống ba cạnh của tam giác lần lượt là D, E, F. Hệ thức giữa các vectơ \(\overrightarrow {MD} ,\overrightarrow {ME} ,\)\[\overrightarrow {MF} ,\] \(\overrightarrow {MO} \) là gì?
Câu 4:
Cho nửa đường tròn (O), đường kính AB. Kẻ 2 tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi C là một điểm thuộc tia Ax, kẻ tiếp tuyến CM với nửa đường tròn (M là tiếp điểm). CM cắt By tại D. Gọi I là giao điểm của OC và AM, K là giao điểm của OD và MB.
a) Tính \(\widehat {COD}.\)
b) Tứ giác OIMK là hình gì?
c) Chứng minh AC.BD không đổi khi C di chuyển trên Ax.
d) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.
Câu 5:
Tính tổng các nghiệm của phương trình \(\log _2^2x - {\log _2}9.{\log _3}x = 3.\)
Câu 6:
Trên một kệ sách có 5 quyển sách Toán, 4 quyển sách Lí, 3 quyển sách Văn. Các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp các quyển sách trên:
a) Một cách tuỳ ý?
b) Theo từng môn và sách Toán nằm ở giữa?
Câu 7:
Cho phương trình \(\left( {2\log _3^2x - {{\log }_3}x - 1} \right)\sqrt {{5^x} - m} = 0\) (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng hai nghiệm phân biệt?
về câu hỏi!