Câu hỏi:
13/07/2024 292Cho a thỏa mãn a2 – 5a + 2 = 0. Tìm giá trị biểu thức: P = a5 – a4 – 18a3 + 9a2 – 5a + 2017 + (a4 – 40a2 + 4) : a2.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
P = a5 – a4 – 18a3 + 9a2 – 5a + 2017 + (a4 – 40a2 + 4) : a2
P = (a5 – 5a4 + 2a3) + (4a4 – 20a3 + 8a2) + (a2 – 5a + 2) + 2015 + \(\frac{{{a^4} - 40{a^2} + 4}}{{{a^2}}}\)
P = a3(a2 – 5a + 2) + 4a2(a2 – 5a + 2) + (a2 – 5a + 2) + 2015 + \(\frac{{{a^4} - 40{a^2} + 4}}{{{a^2}}}\)
P = 2015 +\(\frac{{{a^4} - 40{a^2} + 4}}{{{a^2}}}\)
Lại có: a2 – 5a = –2 ⇒ (a2 – 5a)2 = 4
⇒ a4 – 10a3 + 25a2 = 4
P = 2015 + \(\frac{{{a^4} - 40{a^2} + 4}}{{{a^2}}}\)
\( = \frac{{{a^4} + 1975{a^2} + 4}}{{{a^2}}} = \frac{{4 + 10a\left( {{a^2} - 5a + 2} \right) + 4\left( {{a^2} - 5a + 2} \right) + 1996{a^2} - 4}}{{{a^2}}} = 1996\)
Vậy P = 1996.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ điểm M ở ngoài đường tròn (O) vẽ 2 tiếp tuyến MA, MB đến (O), cát tuyến MCD với (O) (AB là các tiếp điểm và O nằm trong góc BMD.
a) Chứng minh: tứ giác AOBM nội tiếp và xác định tâm G của đường tròn ngoại tiếp.
b) Chứng minh: MA2 = MC.MD.
c) Gọi I là trung điểm của CD. Chứng minh: 5 điểm M,A,O,I,B cùng nằm trên 1 đường tròn.
d) Gọi H là giao điểm của AB và MO. Chứng minh: Tứ giác CHOD nội tiếp.
e) Vẽ dây BE của (O) song song với CD. Chứng minh: 3 điểm E, I, A thẳng hàng.Câu 2:
Hai bạn An và Hưng cùng xuất phát từ điểm P, đi theo hai hướng khác nhau và tạo với nhau một góc 40)° để đến đích là điểm D. Biết rằng họ dừng lại để ăn trưa lần lượt tại A và B (như hình vẽ minh hoạ). Hỏi Hưng phải đi bao xa nữa để đến được đích?
Câu 3:
Chọn ngẫu nhiên 2 số khác nhau từ 30 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tổng là một số chẵn bằng?
Câu 4:
Số nghiệm của phương trình \(\frac{{\sin 3x}}{{\cos x + 1}} = 0\) thuộc đoạn [2π,4π] là bao nhiêu?
Câu 5:
Tìm tất cả các giá trị của tham số thực m để hàm số y = mx3 − 2mx2 + (m − 2)x + 1 không có cực trị.
Câu 7:
về câu hỏi!