Câu hỏi:
13/07/2024 22,664Từ điểm M ở ngoài đường tròn (O) vẽ 2 tiếp tuyến MA, MB đến (O), cát tuyến MCD với (O) (AB là các tiếp điểm và O nằm trong góc BMD.
a) Chứng minh: tứ giác AOBM nội tiếp và xác định tâm G của đường tròn ngoại tiếp.
b) Chứng minh: MA2 = MC.MD.
c) Gọi I là trung điểm của CD. Chứng minh: 5 điểm M,A,O,I,B cùng nằm trên 1 đường tròn.
d) Gọi H là giao điểm của AB và MO. Chứng minh: Tứ giác CHOD nội tiếp.
e) Vẽ dây BE của (O) song song với CD. Chứng minh: 3 điểm E, I, A thẳng hàng.Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
a) Vì MA, MB là tiếp tuyến của (O)
⇒ \(\widehat {MAO} = \widehat {MBO} = 90^\circ \)
Tứ giác AOBM có \(\widehat {MAO} + \widehat {MBO} = 90^\circ + 90^\circ = 180^\circ \)
⇒ A, O, B, M thuộc đường tròn đường kính OM.
⇒ AOBM nội tiếp đường tròn đường kính OM.
Tâm G là trung điểm OM
b. Vì MA là tiếp tuyến của (O)
⇒ \(\widehat {MAC} = \widehat {MDA}\) (góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung AC)
Lại có \(\widehat M\)chung.
Do đó, ΔMAC ∽ ΔMDA(g.g)
⇒ \(\frac{{MA}}{{MD}} = \frac{{MC}}{{MA}}\)
⇒ MA2 = MC.MD.
c) Vì I là trung điểm CD ⇒ OI ⊥ CD
⇒ OI ⊥ MI
⇒ I thuộc đường tròn đường kính OM
⇒ I ∈ (G)
⇒ M, A, O, I, B ∈ (G).
d) Vì MA, MB là tiếp tuyến của (O)
Nên MA = MB, MO là phân giác \[\widehat {AMB}\]
⇒ ΔMAB có MO vừa là phân giác vừa là đường cao.
⇒ MO ⊥ AB
Áp dụng hệ thức lượng vào ΔAMO đường cao AH có:
⇒ MA2 = MH.MO (kết hợp b)
⇒ MH.MO = MC.MD
⇒ \(\frac{{MC}}{{MO}} = \frac{{MH}}{{MD}}\)
Xét ΔMCH và ΔMOD có:
\(\frac{{MC}}{{MO}} = \frac{{MH}}{{MD}}\)
\(\widehat M\)chung
Do đó, ΔMCH ∽ ΔMOD (c.g.c).
⇒ \(\widehat {MHC} = \widehat {MDO} = \widehat {CDO}\)
⇒ CHOD nội tiếp
e) Gọi CD ∩ AB = F
⇒ \(\widehat {AFI} = \widehat {ABE}\) (vì CD // BE và hai góc ở vị trí đồng vị)
Ta có: A, M, B, O, I ∈ (G)
⇒ \(\widehat {AIC} = \widehat {AIM} = \widehat {AOM} = \frac{1}{2}\widehat {AOB} = \widehat {AEB}\)
⇒ \(\widehat {AIF} = \widehat {AEB}\)
⇒ ΔAIF ∽ ΔAEB (g.g).
⇒ \(\widehat {IAF} = \widehat {EAB} = \widehat {EAF}\)
⇒ A, I, E thẳng hàng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hai bạn An và Hưng cùng xuất phát từ điểm P, đi theo hai hướng khác nhau và tạo với nhau một góc 40)° để đến đích là điểm D. Biết rằng họ dừng lại để ăn trưa lần lượt tại A và B (như hình vẽ minh hoạ). Hỏi Hưng phải đi bao xa nữa để đến được đích?
Câu 2:
Số nghiệm của phương trình \(\frac{{\sin 3x}}{{\cos x + 1}} = 0\) thuộc đoạn [2π,4π] là bao nhiêu?
Câu 4:
Chọn ngẫu nhiên 2 số khác nhau từ 30 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tổng là một số chẵn bằng?
Câu 5:
Trong mặt phẳng với hệ trục tọa độ Oxy cho tam giác ABC có A(–1;1), B(1;3) và trọng tân là G\(\left( { - 2;\frac{2}{3}} \right)\). Tìm tọa độ điểm M trên tia Oy sao cho tam giác MBC vuông tại M.
Câu 6:
Tìm tất cả các giá trị của tham số thực m để hàm số y = mx3 − 2mx2 + (m − 2)x + 1 không có cực trị.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
về câu hỏi!