Câu hỏi:

15/08/2023 1,239

Tìm nghiệm dương nhỏ nhất của phương trình sin2x – 2(sinx – cosx) – 2 = 0.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương trình sin2x – 2(sinx – cosx) – 2 = 0 có nghĩa với mọi x

Ta có: sin2x – 2(sinx – cosx) – 2 = 0

2(sinx – cosx) – 2sinxcosx + 2 = 0

Đặt t = sinx – cosx \(\left( {\left| t \right| \le \sqrt 2 } \right)\)

Ta có: sinxcosx = \(\frac{{1 - {t^2}}}{2}\)

Ta có phương trình: 2t – (1 – t2) + 2 = 0

t2 + 2t + 1 = 0

(t + 1)2 = 0

t = –1

Với t = –1 thì sinx – cosx = –1

\(\sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right) = - 1\)

\(\sin \left( {x - \frac{\pi }{4}} \right) = \frac{{ - 1}}{{\sqrt 2 }} = \sin \left( {\frac{{ - \pi }}{4}} \right)\)

\[\left[ \begin{array}{l}x - \frac{\pi }{4} = - \frac{\pi }{4} + k2\pi \\x - \frac{\pi }{4} = \pi - \frac{\pi }{4} + k2\pi \end{array} \right.\]

\[\left[ \begin{array}{l}x = k2\pi \\x = \frac{{3\pi }}{2} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]

Vậy nghiệm dương nhỏ nhất là x = \(\frac{{3\pi }}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ điểm M ở ngoài đường tròn (O) vẽ 2 tiếp tuyến MA, MB đến (O), cát tuyến MCD với  (ảnh 1)

a) Vì MA, MB là tiếp tuyến của (O)

\(\widehat {MAO} = \widehat {MBO} = 90^\circ \)

Tứ giác AOBM có \(\widehat {MAO} + \widehat {MBO} = 90^\circ + 90^\circ = 180^\circ \)

A, O, B, M thuộc đường tròn đường kính OM.

AOBM nội tiếp đường tròn đường kính OM.

Tâm G là trung điểm OM

b. Vì MA là tiếp tuyến của (O)

\(\widehat {MAC} = \widehat {MDA}\) (góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung AC)

Lại có \(\widehat M\)chung.

Do đó, ΔMAC ΔMDA(g.g)

\(\frac{{MA}}{{MD}} = \frac{{MC}}{{MA}}\)

MA2 = MC.MD.

c) Vì I là trung điểm CD  OI CD

OI MI

I thuộc đường tròn đường kính OM

I (G)

M, A, O, I, B (G).

d) Vì MA, MB là tiếp tuyến của (O)

Nên MA = MB, MO là phân giác \[\widehat {AMB}\]

ΔMAB có MO vừa là phân giác vừa là đường cao.

MO AB

Áp dụng hệ thức lượng vào ΔAMO đường cao AH có:

MA2 = MH.MO (kết hợp b)

MH.MO = MC.MD

\(\frac{{MC}}{{MO}} = \frac{{MH}}{{MD}}\)

Xét ΔMCH và ΔMOD có:

\(\frac{{MC}}{{MO}} = \frac{{MH}}{{MD}}\)

\(\widehat M\)chung

Do đó, ΔMCH ΔMOD (c.g.c).

\(\widehat {MHC} = \widehat {MDO} = \widehat {CDO}\)

CHOD nội tiếp

e) Gọi CD ∩ AB = F

\(\widehat {AFI} = \widehat {ABE}\) (vì CD // BE và hai góc ở vị trí đồng vị)

Ta có: A, M, B, O, I (G)

\(\widehat {AIC} = \widehat {AIM} = \widehat {AOM} = \frac{1}{2}\widehat {AOB} = \widehat {AEB}\)

\(\widehat {AIF} = \widehat {AEB}\)

ΔAIF ΔAEB (g.g).

\(\widehat {IAF} = \widehat {EAB} = \widehat {EAF}\)

A, I, E thẳng hàng.

Lời giải

Để đo chiều cao h của cổng parabol của trường ĐHBK Hà Nội, người ta đo khoảng cách giữa (ảnh 1)

AB = 9m

AC = 0,5m

CD = 1,6m

Gọi O là trung điểm của A

Dựng hệ Oxy thỏa mãn A,B thuộc Ox và Oy AB tại O

OB = \(\frac{9}{2}\), OC = \(\frac{9}{2} - 0,5 = 4\)

Cổng là (P) có phương trình dạng y = ax2 + b

Có: \(\left\{ \begin{array}{l}B = \left( {\frac{9}{2};0} \right) \in \left( P \right)\\D = \left( { - 4;1,6} \right) \in \left( P \right)\end{array} \right.\)

\(\left\{ \begin{array}{l}0 = a.{\left( {\frac{9}{2}} \right)^2} + b\\1,6 = a.{\left( { - 4} \right)^2} + b\end{array} \right.\)

\(\left\{ \begin{array}{l}a = \frac{{ - 32}}{{85}}\\b = \frac{{648}}{{85}}\end{array} \right.\)

Tung độ ứng với hoành độ bằng 0 là y = a.02 + b = \(\frac{{648}}{{85}}\)

Vậy chiều cao của cổng Parabol là \(\frac{{648}}{{85}} \approx 7,6m.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP