Câu hỏi:
13/07/2024 3,530Cửa hàng lấy 1 thùng nước ngọt (24 lon)của đại lý phân phối với giá 192.000 đồng và bán lẻ với giá 10.000 đồng/ lon.
a) Hỏi khi bán hết 1 barrel nước ngọt thì cửa hàng thu được lãi bao nhiêu % so với giá gốc?
b) Trong đợt khuyến mãi, do đại lý phân phối giảm giá nên cửa hàng cũng giảm còn 9.500 đồng/ lon và thu được lãi suất như cũ. Hỏi trong đợt này cửa hàng đã mua 1 barrel nước ngọt với giá bao nhiêu?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Khi bán lẻ 1 thùng thì bán được số tiền là:
10000 . 24 = 240000 (đồng)
Số tiền lãi của 1 thùng khi bán lẻ là:
240000 – 192000 = 48000 (đồng)
Tiền lãi chiếm số % giá gốc là:
48000 : 192000 . 100 = 25 (%)
b) Tổng số tiền bán được 1 thùng là;
9500 . 24 = 228000 (đồng)
Vì lãi suất như cũ là 25%
Vậy số tiền bán được chiếm số phần trăm so với giá gốc là
100% + 25% = 125%
Trong đợt này cửa hàng đã mua 1 barrel nước ngọt với giá là:
228000 : 125%= 182400 (đồng).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ điểm M ở ngoài đường tròn (O) vẽ 2 tiếp tuyến MA, MB đến (O), cát tuyến MCD với (O) (AB là các tiếp điểm và O nằm trong góc BMD.
a) Chứng minh: tứ giác AOBM nội tiếp và xác định tâm G của đường tròn ngoại tiếp.
b) Chứng minh: MA2 = MC.MD.
c) Gọi I là trung điểm của CD. Chứng minh: 5 điểm M,A,O,I,B cùng nằm trên 1 đường tròn.
d) Gọi H là giao điểm của AB và MO. Chứng minh: Tứ giác CHOD nội tiếp.
e) Vẽ dây BE của (O) song song với CD. Chứng minh: 3 điểm E, I, A thẳng hàng.Câu 2:
Hai bạn An và Hưng cùng xuất phát từ điểm P, đi theo hai hướng khác nhau và tạo với nhau một góc 40)° để đến đích là điểm D. Biết rằng họ dừng lại để ăn trưa lần lượt tại A và B (như hình vẽ minh hoạ). Hỏi Hưng phải đi bao xa nữa để đến được đích?
Câu 3:
Chọn ngẫu nhiên 2 số khác nhau từ 30 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tổng là một số chẵn bằng?
Câu 4:
Số nghiệm của phương trình \(\frac{{\sin 3x}}{{\cos x + 1}} = 0\) thuộc đoạn [2π,4π] là bao nhiêu?
Câu 5:
Tìm tất cả các giá trị của tham số thực m để hàm số y = mx3 − 2mx2 + (m − 2)x + 1 không có cực trị.
Câu 7:
về câu hỏi!