Câu hỏi:
13/07/2024 6,729
Cửa hàng lấy 1 thùng nước ngọt (24 lon)của đại lý phân phối với giá 192.000 đồng và bán lẻ với giá 10.000 đồng/ lon.
a) Hỏi khi bán hết 1 barrel nước ngọt thì cửa hàng thu được lãi bao nhiêu % so với giá gốc?
b) Trong đợt khuyến mãi, do đại lý phân phối giảm giá nên cửa hàng cũng giảm còn 9.500 đồng/ lon và thu được lãi suất như cũ. Hỏi trong đợt này cửa hàng đã mua 1 barrel nước ngọt với giá bao nhiêu?
Cửa hàng lấy 1 thùng nước ngọt (24 lon)của đại lý phân phối với giá 192.000 đồng và bán lẻ với giá 10.000 đồng/ lon.
a) Hỏi khi bán hết 1 barrel nước ngọt thì cửa hàng thu được lãi bao nhiêu % so với giá gốc?
b) Trong đợt khuyến mãi, do đại lý phân phối giảm giá nên cửa hàng cũng giảm còn 9.500 đồng/ lon và thu được lãi suất như cũ. Hỏi trong đợt này cửa hàng đã mua 1 barrel nước ngọt với giá bao nhiêu?
Quảng cáo
Trả lời:
a) Khi bán lẻ 1 thùng thì bán được số tiền là:
10000 . 24 = 240000 (đồng)
Số tiền lãi của 1 thùng khi bán lẻ là:
240000 – 192000 = 48000 (đồng)
Tiền lãi chiếm số % giá gốc là:
48000 : 192000 . 100 = 25 (%)
b) Tổng số tiền bán được 1 thùng là;
9500 . 24 = 228000 (đồng)
Vì lãi suất như cũ là 25%
Vậy số tiền bán được chiếm số phần trăm so với giá gốc là
100% + 25% = 125%
Trong đợt này cửa hàng đã mua 1 barrel nước ngọt với giá là:
228000 : 125%= 182400 (đồng).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì MA, MB là tiếp tuyến của (O)
⇒ \(\widehat {MAO} = \widehat {MBO} = 90^\circ \)
Tứ giác AOBM có \(\widehat {MAO} + \widehat {MBO} = 90^\circ + 90^\circ = 180^\circ \)
⇒ A, O, B, M thuộc đường tròn đường kính OM.
⇒ AOBM nội tiếp đường tròn đường kính OM.
Tâm G là trung điểm OM
b. Vì MA là tiếp tuyến của (O)
⇒ \(\widehat {MAC} = \widehat {MDA}\) (góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung AC)
Lại có \(\widehat M\)chung.
Do đó, ΔMAC ∽ ΔMDA(g.g)
⇒ \(\frac{{MA}}{{MD}} = \frac{{MC}}{{MA}}\)
⇒ MA2 = MC.MD.
c) Vì I là trung điểm CD ⇒ OI ⊥ CD
⇒ OI ⊥ MI
⇒ I thuộc đường tròn đường kính OM
⇒ I ∈ (G)
⇒ M, A, O, I, B ∈ (G).
d) Vì MA, MB là tiếp tuyến của (O)
Nên MA = MB, MO là phân giác \[\widehat {AMB}\]
⇒ ΔMAB có MO vừa là phân giác vừa là đường cao.
⇒ MO ⊥ AB
Áp dụng hệ thức lượng vào ΔAMO đường cao AH có:
⇒ MA2 = MH.MO (kết hợp b)
⇒ MH.MO = MC.MD
⇒ \(\frac{{MC}}{{MO}} = \frac{{MH}}{{MD}}\)
Xét ΔMCH và ΔMOD có:
\(\frac{{MC}}{{MO}} = \frac{{MH}}{{MD}}\)
\(\widehat M\)chung
Do đó, ΔMCH ∽ ΔMOD (c.g.c).
⇒ \(\widehat {MHC} = \widehat {MDO} = \widehat {CDO}\)
⇒ CHOD nội tiếp
e) Gọi CD ∩ AB = F
⇒ \(\widehat {AFI} = \widehat {ABE}\) (vì CD // BE và hai góc ở vị trí đồng vị)
Ta có: A, M, B, O, I ∈ (G)
⇒ \(\widehat {AIC} = \widehat {AIM} = \widehat {AOM} = \frac{1}{2}\widehat {AOB} = \widehat {AEB}\)
⇒ \(\widehat {AIF} = \widehat {AEB}\)
⇒ ΔAIF ∽ ΔAEB (g.g).
⇒ \(\widehat {IAF} = \widehat {EAB} = \widehat {EAF}\)
⇒ A, I, E thẳng hàng.
Lời giải

AB = 9m
AC = 0,5m
CD = 1,6m
Gọi O là trung điểm của A
Dựng hệ Oxy thỏa mãn A,B thuộc Ox và Oy ⊥ AB tại O
OB = \(\frac{9}{2}\), OC = \(\frac{9}{2} - 0,5 = 4\)
Cổng là (P) có phương trình dạng y = ax2 + b
Có: \(\left\{ \begin{array}{l}B = \left( {\frac{9}{2};0} \right) \in \left( P \right)\\D = \left( { - 4;1,6} \right) \in \left( P \right)\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}0 = a.{\left( {\frac{9}{2}} \right)^2} + b\\1,6 = a.{\left( { - 4} \right)^2} + b\end{array} \right.\)
⇔\(\left\{ \begin{array}{l}a = \frac{{ - 32}}{{85}}\\b = \frac{{648}}{{85}}\end{array} \right.\)
Tung độ ứng với hoành độ bằng 0 là y = a.02 + b = \(\frac{{648}}{{85}}\)
Vậy chiều cao của cổng Parabol là \(\frac{{648}}{{85}} \approx 7,6m.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.