Câu hỏi:
13/07/2024 838Cho đường tròn (O; R). Vẽ dây AB sao cho số đo của cung nhỏ AB bằng 1\(\frac{1}{2}\) số đo của cung lớn AB. Tính diện tích của tam giác AOB.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Vì sđnhỏ = \(\frac{1}{2}\)sđlớn
Suy ra: sđnhỏ = \(\frac{{360}}{3} = 120^\circ \)
Do sđnhỏ = \[\widehat {AOB} = 120^\circ \]
Xét tam giác AOB có OA = OB = R
Nên tam giác AOB cân tại O
Suy ra: \[\widehat {OAB} = \frac{{180^\circ - 120^\circ }}{2} = 30^\circ \]
Kẻ OH ⊥ AB
OH = OA.sin\[\widehat {OAB} = OA.\sin 30^\circ = R\sin 30^\circ = \frac{R}{2}\]
Diện tích tam giác AOB là: S = \(\frac{1}{2}.AB.OH = \frac{1}{2}.R\sqrt 3 .\frac{R}{2} = \frac{{{R^2}\sqrt 3 }}{4}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ điểm M ở ngoài đường tròn (O) vẽ 2 tiếp tuyến MA, MB đến (O), cát tuyến MCD với (O) (AB là các tiếp điểm và O nằm trong góc BMD.
a) Chứng minh: tứ giác AOBM nội tiếp và xác định tâm G của đường tròn ngoại tiếp.
b) Chứng minh: MA2 = MC.MD.
c) Gọi I là trung điểm của CD. Chứng minh: 5 điểm M,A,O,I,B cùng nằm trên 1 đường tròn.
d) Gọi H là giao điểm của AB và MO. Chứng minh: Tứ giác CHOD nội tiếp.
e) Vẽ dây BE của (O) song song với CD. Chứng minh: 3 điểm E, I, A thẳng hàng.Câu 2:
Hai bạn An và Hưng cùng xuất phát từ điểm P, đi theo hai hướng khác nhau và tạo với nhau một góc 40)° để đến đích là điểm D. Biết rằng họ dừng lại để ăn trưa lần lượt tại A và B (như hình vẽ minh hoạ). Hỏi Hưng phải đi bao xa nữa để đến được đích?
Câu 3:
Chọn ngẫu nhiên 2 số khác nhau từ 30 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tổng là một số chẵn bằng?
Câu 4:
Số nghiệm của phương trình \(\frac{{\sin 3x}}{{\cos x + 1}} = 0\) thuộc đoạn [2π,4π] là bao nhiêu?
Câu 5:
Tìm tất cả các giá trị của tham số thực m để hàm số y = mx3 − 2mx2 + (m − 2)x + 1 không có cực trị.
Câu 7:
về câu hỏi!