Câu hỏi:

13/07/2024 582

Có bao nhiêu giá trị nguyên của tham số (m ) thuộc đoạn [– 2018; 2018] để phương trình (m + 1)(sin2x – sin 2x + cos 2x) = 0 có nghiệm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

(m + 1)(sin2x – sin 2x + cos 2x) = 0

(m + 1)\(\left( {\frac{{1 - \cos 2x}}{2}} \right) - \sin 2x + \cos 2x = 0\)

m + 1 – (m + 1)cos2x – 2sin2x + 2cos2x = 0

(m – 1)cos2x + 2sin2x = m + 1 (1)

Để (1) có nghiệm thì:

(m – 1)2 + 22 ≥ (m + 1)2

m2 – 2m + 1 + 4 ≥ m2 + 2m + 1

4m ≤ 4

m ≤ 1

Mà m [– 2018;2018] nên suy ra m [1;2018]

Vậy có: (2018 – 1) : 1 + 1 + 2 = 2020 (số)

Vậy có 2020 giá trị nguyên m thoả mãn đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ điểm M ở ngoài đường tròn (O) vẽ 2 tiếp tuyến MA, MB đến (O), cát tuyến MCD với  (ảnh 1)

a) Vì MA, MB là tiếp tuyến của (O)

\(\widehat {MAO} = \widehat {MBO} = 90^\circ \)

Tứ giác AOBM có \(\widehat {MAO} + \widehat {MBO} = 90^\circ + 90^\circ = 180^\circ \)

A, O, B, M thuộc đường tròn đường kính OM.

AOBM nội tiếp đường tròn đường kính OM.

Tâm G là trung điểm OM

b. Vì MA là tiếp tuyến của (O)

\(\widehat {MAC} = \widehat {MDA}\) (góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung AC)

Lại có \(\widehat M\)chung.

Do đó, ΔMAC ΔMDA(g.g)

\(\frac{{MA}}{{MD}} = \frac{{MC}}{{MA}}\)

MA2 = MC.MD.

c) Vì I là trung điểm CD  OI CD

OI MI

I thuộc đường tròn đường kính OM

I (G)

M, A, O, I, B (G).

d) Vì MA, MB là tiếp tuyến của (O)

Nên MA = MB, MO là phân giác \[\widehat {AMB}\]

ΔMAB có MO vừa là phân giác vừa là đường cao.

MO AB

Áp dụng hệ thức lượng vào ΔAMO đường cao AH có:

MA2 = MH.MO (kết hợp b)

MH.MO = MC.MD

\(\frac{{MC}}{{MO}} = \frac{{MH}}{{MD}}\)

Xét ΔMCH và ΔMOD có:

\(\frac{{MC}}{{MO}} = \frac{{MH}}{{MD}}\)

\(\widehat M\)chung

Do đó, ΔMCH ΔMOD (c.g.c).

\(\widehat {MHC} = \widehat {MDO} = \widehat {CDO}\)

CHOD nội tiếp

e) Gọi CD ∩ AB = F

\(\widehat {AFI} = \widehat {ABE}\) (vì CD // BE và hai góc ở vị trí đồng vị)

Ta có: A, M, B, O, I (G)

\(\widehat {AIC} = \widehat {AIM} = \widehat {AOM} = \frac{1}{2}\widehat {AOB} = \widehat {AEB}\)

\(\widehat {AIF} = \widehat {AEB}\)

ΔAIF ΔAEB (g.g).

\(\widehat {IAF} = \widehat {EAB} = \widehat {EAF}\)

A, I, E thẳng hàng.

Lời giải

Để đo chiều cao h của cổng parabol của trường ĐHBK Hà Nội, người ta đo khoảng cách giữa (ảnh 1)

AB = 9m

AC = 0,5m

CD = 1,6m

Gọi O là trung điểm của A

Dựng hệ Oxy thỏa mãn A,B thuộc Ox và Oy AB tại O

OB = \(\frac{9}{2}\), OC = \(\frac{9}{2} - 0,5 = 4\)

Cổng là (P) có phương trình dạng y = ax2 + b

Có: \(\left\{ \begin{array}{l}B = \left( {\frac{9}{2};0} \right) \in \left( P \right)\\D = \left( { - 4;1,6} \right) \in \left( P \right)\end{array} \right.\)

\(\left\{ \begin{array}{l}0 = a.{\left( {\frac{9}{2}} \right)^2} + b\\1,6 = a.{\left( { - 4} \right)^2} + b\end{array} \right.\)

\(\left\{ \begin{array}{l}a = \frac{{ - 32}}{{85}}\\b = \frac{{648}}{{85}}\end{array} \right.\)

Tung độ ứng với hoành độ bằng 0 là y = a.02 + b = \(\frac{{648}}{{85}}\)

Vậy chiều cao của cổng Parabol là \(\frac{{648}}{{85}} \approx 7,6m.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay