Câu hỏi:

19/08/2025 3,549 Lưu

Từ các chữ số 0;1;2;3;4;5;6;7 lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau chia hết cho 5, đồng thời luôn có mặt chữ số 2 và chữ số 3 đứng cạnh nhau?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi số tự nhiên có 5 chữ số cần tìm là \(\overline {abcde} \)(a ≠ 0)

\(\overline {abcde} \) chia hết cho 5 nên e = 0 hoặc e = 5

Nếu e = 5 thì:

+ Còn 4 vị trí để xếp 2 chữ số 2,3

Coi chữ số 2,3 là 1 nhóm thì có 3 cách xếp

Hoán vị 2 chữ số trong nhóm có 2! cách

2 chữ số còn lại có \(A_5^2\) cách

Vậy có: 3.2!.\(A_5^3\) cách

Tương tự: nếu e = 0 thì có 3.2!.\(A_5^3\) cách

Vậy có: 3.2!.\(A_5^3\) + 3.2!.\(A_5^3\) = 720 (số).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ điểm M ở ngoài đường tròn (O) vẽ 2 tiếp tuyến MA, MB đến (O), cát tuyến MCD với  (ảnh 1)

a) Vì MA, MB là tiếp tuyến của (O)

\(\widehat {MAO} = \widehat {MBO} = 90^\circ \)

Tứ giác AOBM có \(\widehat {MAO} + \widehat {MBO} = 90^\circ + 90^\circ = 180^\circ \)

A, O, B, M thuộc đường tròn đường kính OM.

AOBM nội tiếp đường tròn đường kính OM.

Tâm G là trung điểm OM

b. Vì MA là tiếp tuyến của (O)

\(\widehat {MAC} = \widehat {MDA}\) (góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung AC)

Lại có \(\widehat M\)chung.

Do đó, ΔMAC ΔMDA(g.g)

\(\frac{{MA}}{{MD}} = \frac{{MC}}{{MA}}\)

MA2 = MC.MD.

c) Vì I là trung điểm CD  OI CD

OI MI

I thuộc đường tròn đường kính OM

I (G)

M, A, O, I, B (G).

d) Vì MA, MB là tiếp tuyến của (O)

Nên MA = MB, MO là phân giác \[\widehat {AMB}\]

ΔMAB có MO vừa là phân giác vừa là đường cao.

MO AB

Áp dụng hệ thức lượng vào ΔAMO đường cao AH có:

MA2 = MH.MO (kết hợp b)

MH.MO = MC.MD

\(\frac{{MC}}{{MO}} = \frac{{MH}}{{MD}}\)

Xét ΔMCH và ΔMOD có:

\(\frac{{MC}}{{MO}} = \frac{{MH}}{{MD}}\)

\(\widehat M\)chung

Do đó, ΔMCH ΔMOD (c.g.c).

\(\widehat {MHC} = \widehat {MDO} = \widehat {CDO}\)

CHOD nội tiếp

e) Gọi CD ∩ AB = F

\(\widehat {AFI} = \widehat {ABE}\) (vì CD // BE và hai góc ở vị trí đồng vị)

Ta có: A, M, B, O, I (G)

\(\widehat {AIC} = \widehat {AIM} = \widehat {AOM} = \frac{1}{2}\widehat {AOB} = \widehat {AEB}\)

\(\widehat {AIF} = \widehat {AEB}\)

ΔAIF ΔAEB (g.g).

\(\widehat {IAF} = \widehat {EAB} = \widehat {EAF}\)

A, I, E thẳng hàng.

Lời giải

Xét PAB:

AB2 = AP2 + BP2 − 2.AP.BP.cos\(\widehat {APB}\) = 82 + 72 − 2.8.7.cos40° ≈ 27,2

Suy ra: AB ≈ 5,22 (km)       

\(\cos \widehat {APB} = \frac{{P{A^2} + B{A^2} - P{B^2}}}{{2.PA.BA}} = \frac{{{8^2} + 5,{{22}^2} - {7^2}}}{{2.8.5,22}} \approx 0,51\)

Suy ra: \(\widehat {PAB} \approx 60^\circ \)

\(\widehat {BAD} \approx 100^\circ - 60^\circ = 40^\circ \)

Xét ABD:

DB2 = AD2 + BA2 − 2.DA.BA.cos\(\widehat {DAB}\) = 32 + 5,222 − 2.3.5,22.cos40° ≈ 12,26

DB ≈ 3,5 (km)

Vậy Hưng phải đi khoảng 3,5km nữa để đến được đích.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP