Câu hỏi:
13/07/2024 6,026Cho hàm số y = f(x) = mx2 + 2(m – 6)x + 2. Có bao nhiêu giá trị nguyên của m để f(x) nghịch biến trên khoảng (–∞; 2)?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có: \(\frac{{ - b}}{{2a}} = \frac{{ - 2\left( {m - 6} \right)}}{{2m}} = \frac{{6 - m}}{m}\)
Nếu m > 0 thì hàm số nghịch biến trên khoảng (−∞; 6 – m)
Hàm số nghịch biến trên (−∞; 2)
⇔ 2m ≤ 6 − m
⇔ 3m ≤ 6
⇔ m ≤ 2
Do đó 0 < m ≤ 2
Nếu m = 0 thì hàm số là y = −12x + 2 nghịch biến trên ℝ nên cũng nghịch biến trên (− ∞; 2).
Nếu m < 0 thì hàm số nghịch biến trên (6 – m ; + ∞) nên không thể nghịch biến trên (− ∞; 2).
Vậy 0 ≤ m ≤ 2 nên có 3 giá trị nguyên của m.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ điểm M ở ngoài đường tròn (O) vẽ 2 tiếp tuyến MA, MB đến (O), cát tuyến MCD với (O) (AB là các tiếp điểm và O nằm trong góc BMD.
a) Chứng minh: tứ giác AOBM nội tiếp và xác định tâm G của đường tròn ngoại tiếp.
b) Chứng minh: MA2 = MC.MD.
c) Gọi I là trung điểm của CD. Chứng minh: 5 điểm M,A,O,I,B cùng nằm trên 1 đường tròn.
d) Gọi H là giao điểm của AB và MO. Chứng minh: Tứ giác CHOD nội tiếp.
e) Vẽ dây BE của (O) song song với CD. Chứng minh: 3 điểm E, I, A thẳng hàng.Câu 2:
Hai bạn An và Hưng cùng xuất phát từ điểm P, đi theo hai hướng khác nhau và tạo với nhau một góc 40)° để đến đích là điểm D. Biết rằng họ dừng lại để ăn trưa lần lượt tại A và B (như hình vẽ minh hoạ). Hỏi Hưng phải đi bao xa nữa để đến được đích?
Câu 3:
Chọn ngẫu nhiên 2 số khác nhau từ 30 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tổng là một số chẵn bằng?
Câu 4:
Số nghiệm của phương trình \(\frac{{\sin 3x}}{{\cos x + 1}} = 0\) thuộc đoạn [2π,4π] là bao nhiêu?
Câu 5:
Tìm tất cả các giá trị của tham số thực m để hàm số y = mx3 − 2mx2 + (m − 2)x + 1 không có cực trị.
Câu 7:
về câu hỏi!