Câu hỏi:
15/08/2023 715Cho hình thang vuông ABCD với đường cao AB = 2a, các cạnh đáy AD = a và BC = 3a . Gọi M là điểm trên đoạn AC sao cho \(\overrightarrow {AM} = k\overrightarrow {AC} \). Tìm k để BM ⊥ CD.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chọn hệ trục tọa độ như hình vẽ sao cho gốc tọa độ trùng với điểm B, điểm A thuộc Oy và điểm C thuộc Ox.
Theo bài ra ta có:
B(0; 0), C(3; 0), A(0; 2), D(1; 2).
Khi đó: \(\overrightarrow {AC} = \left( {3; - 2} \right)\)
Phương trình tham số của AC là: \[\left\{ \begin{array}{l}x = 3t\\y = 2 - 2t\end{array} \right.\]
Gọi M thuộc AC suy ra: M(3t ; 2 – 2t)
Ta có: \(\overrightarrow {BM} = \left( {3t;2 - 2t} \right);\overrightarrow {DC} = \left( {2; - 2} \right)\)
Để BM ⊥ CD thì \(\overrightarrow {BM} .\overrightarrow {DC} = 0\)
⇔ 6t – 4 + 4t = 0
⇔ t = \(\frac{2}{5}\)
⇒ \(M\left( {\frac{6}{5};\frac{6}{5}} \right)\)
Khi đó: \(\overrightarrow {AM} = \left( {\frac{6}{5};\frac{{ - 4}}{5}} \right)\)⇒\(AM = \frac{{\sqrt {52} }}{5}\)
\(\overrightarrow {AC} = \left( {3; - 2} \right)\)⇒ \(AC = \sqrt {13} \)
Vì \(\overrightarrow {AM} = k\overrightarrow {AC} \) và \(\overrightarrow {AM} ,\overrightarrow {AC} \) cùng chiều nên k = \(\frac{{AM}}{{AC}} = \frac{{\sqrt {52} }}{{5\sqrt {13} }} = \frac{2}{5}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ điểm M ở ngoài đường tròn (O) vẽ 2 tiếp tuyến MA, MB đến (O), cát tuyến MCD với (O) (AB là các tiếp điểm và O nằm trong góc BMD.
a) Chứng minh: tứ giác AOBM nội tiếp và xác định tâm G của đường tròn ngoại tiếp.
b) Chứng minh: MA2 = MC.MD.
c) Gọi I là trung điểm của CD. Chứng minh: 5 điểm M,A,O,I,B cùng nằm trên 1 đường tròn.
d) Gọi H là giao điểm của AB và MO. Chứng minh: Tứ giác CHOD nội tiếp.
e) Vẽ dây BE của (O) song song với CD. Chứng minh: 3 điểm E, I, A thẳng hàng.Câu 2:
Hai bạn An và Hưng cùng xuất phát từ điểm P, đi theo hai hướng khác nhau và tạo với nhau một góc 40)° để đến đích là điểm D. Biết rằng họ dừng lại để ăn trưa lần lượt tại A và B (như hình vẽ minh hoạ). Hỏi Hưng phải đi bao xa nữa để đến được đích?
Câu 3:
Chọn ngẫu nhiên 2 số khác nhau từ 30 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tổng là một số chẵn bằng?
Câu 4:
Số nghiệm của phương trình \(\frac{{\sin 3x}}{{\cos x + 1}} = 0\) thuộc đoạn [2π,4π] là bao nhiêu?
Câu 5:
Tìm tất cả các giá trị của tham số thực m để hàm số y = mx3 − 2mx2 + (m − 2)x + 1 không có cực trị.
Câu 7:
về câu hỏi!