Câu hỏi:

16/08/2023 403

Cho lục giác ABCDEF. Có bao nhiêu vectơ khác vectơ \(\overrightarrow 0 \) có điểm đầu và điểm cuối là đỉnh của lục giác.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Hai điểm phân biệt, chẳng hạn A, B ta xác định được hai vectơ khác vectơ \(\overrightarrow 0 \)\(\overrightarrow {AB} ;\overrightarrow {BA} \)

Một vectơ khác vectơ \(\overrightarrow 0 \) được xác định bởi 2 điểm phân biệt. Do đó có 30 cách chọn 2 điểm trong 4 điểm của tứ giác (có tính thứ tự các điểm) nên có thể lập được 30 vectơ

Vậy ta chọn đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Với a, b > 0 ta có

log3a – 2log9b = 2

log3a – log3b = 2

\( \Leftrightarrow {\log _3}\frac{a}{b} = 2\)\( \Leftrightarrow \frac{a}{b} = 9\)

a = 9b

Vậy ta chọn đáp án B.

Lời giải

Đáp án đúng là: B

Cho hình thang cân ABCD, có đáy nhỏ và đường cao cùng bẳng 2a và góc ABC (ảnh 1)

Gọi H, K là chân đường cao hạ từ A, D xuống BC

Khi đó tam giác ABH vuông tại H

\(\widehat {ABC} = 45^\circ \)

Suy ra tam giác ABH vuông cân tại H

Do đó AH = BH = 2a

Vì hình thang ABCD cân

Nên AB = CD, \(\widehat {ABC} = \widehat {DCB}\), BD = AC

Xét tam giác ABH và tam giác DCK có

\(\widehat {AHB} = \widehat {DKC}\left( { = 90^\circ } \right)\)

AB = CD

\(\widehat {ABC} = \widehat {DCB}\)

Suy ra ∆ABH = ∆DCK (cạnh huyền – góc nhọn)

Do đó CK = BH = 2a

Ta có CH = AD + CK = 2a + 2a = 4a

Xét tam giac AHC vuông tại H có

AC2 = AH2 + CH2

Suy ra \[{\rm{AC = }}\sqrt {{{\left( {2{\rm{a}}} \right)}^2} + {{\left( {4{\rm{a}}} \right)}^2}} = 2{\rm{a}}\sqrt 5 \]

Ta có:

\(\left| {\overrightarrow {CB} - \overrightarrow {A{\rm{D}}} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB} + \overrightarrow {DA} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB} + \overrightarrow {DC} } \right| = \left| {\overrightarrow {DB} } \right| = AC = 2{\rm{a}}\sqrt 5 \)

Vậy ta chọn đáp án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho a, b là hai số thực dương tùy ý và b ≠ 1. Tìm kết luận đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay