Câu hỏi:

16/08/2023 2,360 Lưu

Xếp 6 người A, B, C, D, E, F vào một ghế dài. Hỏi có bao nhiêu cách sắp xếp sao cho A và F không ngồi cạnh nhau.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Số cách xếp 6  người vào 6 ghế là 6!

Ta tính số cách xếp sao cho A và F ngồi cạnh nhau:

Xem AF là một phần tử X, ta có 5! = 120 cách xếp 5 người X; B; C; D; E

Khi hoán vị A; F ta có thêm được một cách xếp

Vậy có 2 . 120 = 240 cách xếp để A và F ngồi cạnh nhau

Do đó, số cách xếp để A và F không ngồi cạnh nhau là:

6! – 240 = 480 cách

Vậy ta chọn đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Với a, b > 0 ta có

log3a – 2log9b = 2

log3a – log3b = 2

\( \Leftrightarrow {\log _3}\frac{a}{b} = 2\)\( \Leftrightarrow \frac{a}{b} = 9\)

a = 9b

Vậy ta chọn đáp án B.

Lời giải

Phương trình dạng ax2 + bx + c = 0

Denta: Dùng cho mọi trường hợp

Công thức denta: ∆ = b2 – 4ac

• Denta phẩy: Nên dùng khi hệ số b chia hết cho 2

Công thức denta phẩy: ∆’ = b’2 – ac trong đó b' = b2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP