Câu hỏi:
12/07/2024 1,825
Giải hệ phương trình: \(\left\{ \begin{array}{l}2{\rm{x}} + y = \frac{3}{{{x^2}}}\\2y + x = \frac{3}{{{y^2}}}\end{array} \right.\).
Giải hệ phương trình: \(\left\{ \begin{array}{l}2{\rm{x}} + y = \frac{3}{{{x^2}}}\\2y + x = \frac{3}{{{y^2}}}\end{array} \right.\).
Quảng cáo
Trả lời:
Điều kiện x, y ≠ 0
Ta có: \(\left( {2{\rm{x}} + y} \right) - \left( {2y + x} \right) = \frac{3}{{{x^2}}} - \frac{3}{{{y^2}}}\)
\( \Leftrightarrow x - y = \frac{{3\left( {{y^2} - {x^2}} \right)}}{{{x^2}{y^2}}}\)
\( \Leftrightarrow x - y = \frac{{3\left( {y - x} \right)\left( {y + x} \right)}}{{{x^2}{y^2}}}\)
\( \Leftrightarrow x - y - \frac{{3\left( {y - x} \right)\left( {y + x} \right)}}{{{x^2}{y^2}}} = 0\)
\( \Leftrightarrow \left( {x - y} \right)\left( {1 + \frac{{3x + 3y}}{{{x^2}{y^2}}}} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}x - y = 0\\1 + \frac{{3x + 3y}}{{{x^2}{y^2}}} = 0\end{array} \right.\)
• TH1: x – y = 0 ⇔ x = y
Thay x = y vào phương trình \(2{\rm{x}} + y = \frac{3}{{{x^2}}}\) ta có:
\(2{\rm{x}} + x = \frac{3}{{{x^2}}} \Leftrightarrow 3{\rm{x}} = \frac{3}{{{x^2}}} \Leftrightarrow {x^3} = 1 \Leftrightarrow x = 1\)
Suy ra y = 1
• TH2: \(1 + \frac{{3x + 3y}}{{{x^2}{y^2}}} = 0\)
\( \Leftrightarrow \frac{{3x + 3y}}{{{x^2}{y^2}}} = - 1 \Leftrightarrow 3{\rm{x}} + 3y = - {x^2}{y^2} < 0\) (1)
Ta có:
\(\left( {2{\rm{x}} + y} \right) + \left( {2y + x} \right) = \frac{3}{{{x^2}}} + \frac{3}{{{y^2}}}\)
\( \Leftrightarrow 3x + 3y = \frac{{3\left( {{y^2} + {x^2}} \right)}}{{{x^2}{y^2}}} > 0\) (2)
Từ (1) và (2) suy ra x, y ∈ ∅
Vậy (x, y) = (1, 1).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Với a, b > 0 ta có
log3a – 2log9b = 2
⇔ log3a – log3b = 2
\( \Leftrightarrow {\log _3}\frac{a}{b} = 2\)\( \Leftrightarrow \frac{a}{b} = 9\)
⇔ a = 9b
Vậy ta chọn đáp án B.
Lời giải
Phương trình dạng ax2 + bx + c = 0
• Denta: Dùng cho mọi trường hợp
Công thức denta: ∆ = b2 – 4ac
• Denta phẩy: Nên dùng khi hệ số b chia hết cho 2
Công thức denta phẩy: ∆’ = b’2 – ac trong đó b' = b2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.