Câu hỏi:
16/08/2023 125Tìm tất cả các giá trị thực của tham số m để phương trình x2 – 5x + 7 + 2m = 0 có nghiệm thuộc đoạn [1; 5]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có: x2 – 5x + 7 + 2m = 0
⇔ x2 – 5x + 7 = – 2m (*)
Phương trình (*) là phương trình hoành độ giao điểm của Parabol (P): x2 – 5x + 7 và đường thẳng y = – 2m (song song hoặc trùng với trục hoành)
Ta có bảng biến thiên của hàm số x2 – 5x + 7 trên đoạn [1; 5] như sau:
Dựa vào bảng biến thiên ta thấy x ∈ [1; 5] thì \(y \in \left[ {\frac{3}{4};7} \right]\)
Do đó để phương trình (*) có nghiệm x ∈ [1; 5]
\( \Leftrightarrow \frac{3}{4} \le - 2m \le 7 \Leftrightarrow \frac{{ - 3}}{8} \ge m \ge - \frac{7}{2}\)
Vậy ta chọn đáp án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Với a, b là các số thực dương tùy ý thỏa mãn log3a – 2log9b = 2, mệnh đề nào dưới đây đúng?
Câu 2:
Cho hình thang cân ABCD, có đáy nhỏ và đường cao cùng bẳng 2a và \(\widehat {ABC} = 45^\circ \). Tính \(\left| {\overrightarrow {CB} - \overrightarrow {A{\rm{D}}} + \overrightarrow {AC} } \right|\).
Câu 5:
Tìm tập hợp các giá trị của tham số thực m để phương trình 6x + (3 – m) . 2x – m = 0 có nghiệm thuộc khoảng (0; 1).
Câu 6:
Tìm số nguyên a, b biết \(\frac{a}{7} - \frac{1}{2} = \frac{1}{{b + 3}}\).
về câu hỏi!