Quảng cáo
Trả lời:
Áp dụng bất đẳng thức Cô – si ta có:
a3 + b3 + b3 ≥ 3ab2
b3 + c3 + c3 ≥ 3bc2
a3 + a3 + c3 ≥ 3ca2
Cộng vế với vế của các bất đẳng thức trên ta được
3(a3 + b3 + c3) ≥ 3(ab2 + bc2 + ca2)
⇔ a3 + b3 + c3 ≥ ab2 + bc2 + ca2
Dấu “=” xảy ra khi a = b = c
Vậy a3 + b3 + c3 ≥ ab2 + bc2 + ca2.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Với a, b > 0 ta có
log3a – 2log9b = 2
⇔ log3a – log3b = 2
\( \Leftrightarrow {\log _3}\frac{a}{b} = 2\)\( \Leftrightarrow \frac{a}{b} = 9\)
⇔ a = 9b
Vậy ta chọn đáp án B.
Lời giải
Phương trình dạng ax2 + bx + c = 0
• Denta: Dùng cho mọi trường hợp
Công thức denta: ∆ = b2 – 4ac
• Denta phẩy: Nên dùng khi hệ số b chia hết cho 2
Công thức denta phẩy: ∆’ = b’2 – ac trong đó b' = b2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.