Câu hỏi:

16/08/2023 394

Cho phương trình \({2^{{{\left( {x - 1} \right)}^2}}}.{\log _2}\left( {{x^2} - 2{\rm{x}} + 3} \right) = {4^{\left| {x - m} \right|}}{\log _2}\left( {2\left| {x - m} \right| + 2} \right)\) với m là tham số thực. Có bao nhiêu giá trị nguyên của m trên đoạn [–2019; 2019] để phương trình có đúng 2 nghiệm phân biệt.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Điều kiện x

Ta có: \({2^{{{\left( {x - 1} \right)}^2}}}.{\log _2}\left( {{x^2} - 2{\rm{x}} + 3} \right) = {4^{\left| {x - m} \right|}}{\log _2}\left( {2\left| {x - m} \right| + 2} \right)\)

\( \Leftrightarrow {2^{{{\left( {x - 1} \right)}^2}}}.{\log _2}\left[ {{{\left( {x - 1} \right)}^2} + 2} \right] = {2^{2\left| {x - m} \right|}}{\log _2}\left( {2\left| {x - m} \right| + 2} \right)\)                      (1)

Xét hàm số \(y = {2^t}.{\log _2}\left( {t + 2} \right)\) với t ≥ 0

Hàm số \(y = {2^t}.{\log _2}\left( {t + 2} \right)\) xác định và liên tục trên [0; +∞)

Ta có: \(y' = {2^t}.{\log _2}\left( {t + 2} \right).\ln 2 + \frac{{{2^t}}}{{\left( {t + 2} \right)\ln 2}} > 0\)

Suy ra hàm số \(y = {2^t}.{\log _2}\left( {t + 2} \right)\) đồng biến trên [0; +∞)

Ta có: \(\left( 1 \right) \Leftrightarrow f\left( {{{\left( {x - 1} \right)}^2}} \right) = f\left( {2\left| {x - m} \right|} \right)\)

\( \Leftrightarrow {\left( {x - 1} \right)^2} = 2\left| {x - m} \right|\)

\( \Leftrightarrow \left[ \begin{array}{l}{\left( {x - 1} \right)^2} = 2\left( {x - m} \right)\\{\left( {x - 1} \right)^2} = 2\left( {m - x} \right)\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}{x^2} - 2{\rm{x + }}1 = 2x - 2m\\{x^2} - 2{\rm{x}} + 1 = 2m - 2{\rm{x}}\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l} - {x^2} + 4{\rm{x}} - 1 = 2m\\{x^2} + 1 = 2m\end{array} \right.\left( * \right)\)

Xét phương trình 2m = – x2 + 4x – 1

Ta có bảng biến thiên của hàm số g(x) = – x2 + 4x – 1

Cho phương trình 2^(x-1)^2 . log2 (x^2 - 2x + 3) = 4^|x-m| log2 (2|x - m| (ảnh 1)

Phương trình 2m = – x2 + 4x – 1 có 2 nghiệm phân biệt khi 2m < 3 hay \(m < \frac{3}{2}\)

Phương trình 2m = – x2 + 4x – 1 có 1 nghiệm phân biệt khi 2m = 3 hay \(m = \frac{3}{2}\)

Phương trình 2m = – x2 + 4x – 1 vô nghiệm phân biệt khi 2m > 3 hay \(m > \frac{3}{2}\)

Xét phương trình 2m = x2 + 1

Ta có bảng biến thiên của hàm số h(x) = x2 + 1

Cho phương trình 2^(x-1)^2 . log2 (x^2 - 2x + 3) = 4^|x-m| log2 (2|x - m| (ảnh 2)

Phương trình 2m = x2 + 1 có 2 nghiệm phân biệt khi 2m > 1 hay \(m > \frac{1}{2}\)

Phương trình 2m = x2 + 1 có 1 nghiệm phân biệt khi 2m = 1 hay \(m = \frac{1}{2}\)

Phương trình 2m = x2 + 1 vô nghiệm phân biệt khi 2m < 1 hay \(m < \frac{1}{2}\)

+) Khi \(m = \frac{3}{2}\) phương trình 2m = – x2 + 4x – 1 có 1 nghiệm x = 2, phương trình 2m = x2 + 1 có 2 nghiệm \[{\rm{x}} = \pm \sqrt 2 \]

Suy ra (*) có 3 nghiệm phân biệt nên loại \(m = \frac{3}{2}\)

+) Khi \(m = \frac{1}{2}\) phương trình 2m = – x2 + 4x – 1 có 2 nghiệm \[{\rm{x}} = 2 \pm \sqrt 2 \], phương trình 2m = x2 + 1 có 1 nghiệm x = 0

Suy ra (*) có 3 nghiệm phân biệt nên loại \(m = \frac{1}{2}\)

+) Xét phương trình – x2 + 4x – 1 = x2 + 1

2x2 – 4x + 2 = 0

2(x – 1)2 = 0

x = 1

Suy ra không tồn tại m để (*) có 2 nghiệm phân biệt

Để phương trình \({2^{{{\left( {x - 1} \right)}^2}}}.{\log _2}\left( {{x^2} - 2{\rm{x}} + 3} \right) = {4^{\left| {x - m} \right|}}{\log _2}\left( {2\left| {x - m} \right| + 2} \right)\) có đúng 2 nghiệm phân biệt

\( \Leftrightarrow \left[ \begin{array}{l} - {x^2} + 4{\rm{x}} - 1 = 2m\\{x^2} + 1 = 2m\end{array} \right.\left( * \right)\) có đúng hai nghiệm phân biệt

TH1: Phương trình 2m = – x2 + 4x – 1 có 2 nghiệm phân biệt và phương trình 2m = x2 + 1 vô nghiệm

\( \Leftrightarrow \left\{ \begin{array}{l}m < \frac{3}{2}\\m < \frac{1}{2}\end{array} \right. \Leftrightarrow m < \frac{1}{2}\)

TH2: Phương trình 2m = – x2 + 4x – 1 vô nghiệm và phương trình 2m = x2 + 1 có 2 nghiệm phân biệt

\( \Leftrightarrow \left\{ \begin{array}{l}m > \frac{3}{2}\\m > \frac{1}{2}\end{array} \right. \Leftrightarrow m > \frac{3}{2}\)

TH3: Phương trình 2m = – x2 + 4x – 1 có nghiệm x = 2 và phương trình 2m = x2 + 1 có nghiệm x = 0

\( \Leftrightarrow \left\{ \begin{array}{l}m = \frac{3}{2}\\m = \frac{1}{2}\end{array} \right. \Leftrightarrow m \in \emptyset \)

Mà m [– 2019; 2019]

Nên \(m \in \left[ { - 2019;\left. {\frac{1}{2}} \right) \cup \left( {\frac{3}{2};\left. {2019} \right]} \right.} \right.\)

Vì m nguyên nên ta có 4038 giá trị của m

Vậy ta chọn đáp án C.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Với a, b là các số thực dương tùy ý thỏa mãn log3a – 2log9b = 2, mệnh đề nào dưới đây đúng?

Xem đáp án » 16/08/2023 12,789

Câu 2:

Cho hình thang cân ABCD, có đáy nhỏ và đường cao cùng bẳng 2a và \(\widehat {ABC} = 45^\circ \). Tính \(\left| {\overrightarrow {CB} - \overrightarrow {A{\rm{D}}} + \overrightarrow {AC} } \right|\).

Xem đáp án » 16/08/2023 11,466

Câu 3:

Khi nào dùng denta và denta phẩy?

Xem đáp án » 12/07/2024 8,834

Câu 4:

Chứng minh bất đẳng thức: a2 + b2 ≥ 2ab.

Xem đáp án » 12/07/2024 6,195

Câu 5:

Tìm số nguyên a, b biết \(\frac{a}{7} - \frac{1}{2} = \frac{1}{{b + 3}}\).

Xem đáp án » 12/07/2024 4,540

Câu 6:

Phân tích đa thức thành nhân tử: x2 + 2y2 – 3xy + x – 2y.

Xem đáp án » 12/07/2024 3,348

Câu 7:

Cho a, b là hai số thực dương tùy ý và b ≠ 1. Tìm kết luận đúng.

Xem đáp án » 16/08/2023 3,250
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua