Câu hỏi:

19/08/2025 3,123 Lưu

Cho x, y, z là các số thực dương và thỏa mãn điều kiện x + y + z = xyz. Tìm giá trị lớn nhất của: \(P = \frac{1}{{\sqrt {1 + {x^2}} }} + \frac{1}{{\sqrt {1 + {y^2}} }} + \frac{1}{{\sqrt {1 + {z^2}} }}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vì x, y, z là các số thực dương và thỏa mãn điều kiện x + y + z = xyz

Nên \(\frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{x{\rm{z}}}} = 1\)

Ta có:

\(\frac{1}{{\sqrt {1 + {x^2}} }} = \frac{1}{{\sqrt {\frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{z{\rm{x}}}} + {x^2}} }} \le \frac{1}{{2\sqrt {\frac{{{x^2}y}}{{xyz}}} }} \le \frac{1}{2}\)

\(\frac{1}{{\sqrt {1 + {y^2}} }} = \frac{1}{{\sqrt {\frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{z{\rm{x}}}} + {y^2}} }} \le \frac{1}{{2\sqrt {\frac{{{y^2}z}}{{xyz}}} }} \le \frac{1}{2}\)

\(\frac{1}{{\sqrt {1 + {z^2}} }} = \frac{1}{{\sqrt {\frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{z{\rm{x}}}} + {z^2}} }} \le \frac{1}{{2\sqrt {\frac{{{z^2}x}}{{xyz}}} }} \le \frac{1}{2}\)

Suy ra \(\frac{1}{{\sqrt {1 + {x^2}} }} + \frac{1}{{\sqrt {1 + {y^2}} }} + \frac{1}{{\sqrt {1 + {z^2}} }} \le \frac{1}{2} + \frac{1}{2} + \frac{1}{2}\)

Hay \(P \le \frac{3}{2}\)

Dấu “=” xảy ra khi x = y = z = 1

Vậy giá trị lớn nhất của P là \(\frac{3}{2}\) khi x = y = z = 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương trình dạng ax2 + bx + c = 0

Denta: Dùng cho mọi trường hợp

Công thức denta: ∆ = b2 – 4ac

• Denta phẩy: Nên dùng khi hệ số b chia hết cho 2

Công thức denta phẩy: ∆’ = b’2 – ac trong đó b' = b2.

Lời giải

Đáp án đúng là: B

Cho hình thang cân ABCD, có đáy nhỏ và đường cao cùng bẳng 2a và góc ABC (ảnh 1)

Gọi H, K là chân đường cao hạ từ A, D xuống BC

Khi đó tam giác ABH vuông tại H

\(\widehat {ABC} = 45^\circ \)

Suy ra tam giác ABH vuông cân tại H

Do đó AH = BH = 2a

Vì hình thang ABCD cân

Nên AB = CD, \(\widehat {ABC} = \widehat {DCB}\), BD = AC

Xét tam giác ABH và tam giác DCK có

\(\widehat {AHB} = \widehat {DKC}\left( { = 90^\circ } \right)\)

AB = CD

\(\widehat {ABC} = \widehat {DCB}\)

Suy ra ∆ABH = ∆DCK (cạnh huyền – góc nhọn)

Do đó CK = BH = 2a

Ta có CH = AD + CK = 2a + 2a = 4a

Xét tam giac AHC vuông tại H có

AC2 = AH2 + CH2

Suy ra \[{\rm{AC = }}\sqrt {{{\left( {2{\rm{a}}} \right)}^2} + {{\left( {4{\rm{a}}} \right)}^2}} = 2{\rm{a}}\sqrt 5 \]

Ta có:

\(\left| {\overrightarrow {CB} - \overrightarrow {A{\rm{D}}} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB} + \overrightarrow {DA} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB} + \overrightarrow {DC} } \right| = \left| {\overrightarrow {DB} } \right| = AC = 2{\rm{a}}\sqrt 5 \)

Vậy ta chọn đáp án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP