Quảng cáo
Trả lời:
Điều kiện xác định \(\left\{ \begin{array}{l}{x^2} - 3 \ge 0\\1 - \sqrt {{x^2} - 3} \ne 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 3 \ge 0\\\sqrt {{x^2} - 3} \ne 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 3 \ge 0\\{x^2} - 3 \ne 1\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x^2} \ge 3\\{x^2} \ne 4\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x \ge \sqrt 3 \\x \le - \sqrt 3 \end{array} \right.\\x \ne \pm 2\end{array} \right.\)
Vậy \[{\rm{x}} \ne {\rm{2}},{\rm{x}} \ge \sqrt 3 \] hoặc \(x \ne - 2;x \le - \sqrt 3 \).Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Với a, b > 0 ta có
log3a – 2log9b = 2
⇔ log3a – log3b = 2
\( \Leftrightarrow {\log _3}\frac{a}{b} = 2\)\( \Leftrightarrow \frac{a}{b} = 9\)
⇔ a = 9b
Vậy ta chọn đáp án B.
Lời giải
Phương trình dạng ax2 + bx + c = 0
• Denta: Dùng cho mọi trường hợp
Công thức denta: ∆ = b2 – 4ac
• Denta phẩy: Nên dùng khi hệ số b chia hết cho 2
Công thức denta phẩy: ∆’ = b’2 – ac trong đó b' = b2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.