Câu hỏi:
16/08/2023 165Tìm điều kiện xác định của biểu thức \(\frac{1}{{1 - \sqrt {{x^2} - 3} }}\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Điều kiện xác định \(\left\{ \begin{array}{l}{x^2} - 3 \ge 0\\1 - \sqrt {{x^2} - 3} \ne 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 3 \ge 0\\\sqrt {{x^2} - 3} \ne 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 3 \ge 0\\{x^2} - 3 \ne 1\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x^2} \ge 3\\{x^2} \ne 4\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x \ge \sqrt 3 \\x \le - \sqrt 3 \end{array} \right.\\x \ne \pm 2\end{array} \right.\)
Vậy \[{\rm{x}} \ne {\rm{2}},{\rm{x}} \ge \sqrt 3 \] hoặc \(x \ne - 2;x \le - \sqrt 3 \).CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Với a, b là các số thực dương tùy ý thỏa mãn log3a – 2log9b = 2, mệnh đề nào dưới đây đúng?
Câu 2:
Cho hình thang cân ABCD, có đáy nhỏ và đường cao cùng bẳng 2a và \(\widehat {ABC} = 45^\circ \). Tính \(\left| {\overrightarrow {CB} - \overrightarrow {A{\rm{D}}} + \overrightarrow {AC} } \right|\).
Câu 5:
Tìm tập hợp các giá trị của tham số thực m để phương trình 6x + (3 – m) . 2x – m = 0 có nghiệm thuộc khoảng (0; 1).
Câu 6:
Tìm số nguyên a, b biết \(\frac{a}{7} - \frac{1}{2} = \frac{1}{{b + 3}}\).
về câu hỏi!