Gọi S là tập hợp các giá trị nguyên dương của m để hàm số y = x3 – 3(2m + 1)x2 + (12m + 5)x + 2 đồng biến trên khoảng (2; +∞). Số phần tử của S bằng
Gọi S là tập hợp các giá trị nguyên dương của m để hàm số y = x3 – 3(2m + 1)x2 + (12m + 5)x + 2 đồng biến trên khoảng (2; +∞). Số phần tử của S bằng
A. 2
B. 3
C. 0
D. 1.
Quảng cáo
Trả lời:
Đáp án đúng là: C
Tập xác định D = ℝ
Ta có: y’ = 3x2 – 6(2m + 1)x + 12m + 5
Hàm số đồng biến trên khoảng (2; +∞) khi y’ ≥ 0 với mọi x ∈ (2; +∞)
⇔ 3x2 – 6(2m + 1)x + 12m + 5 ≥ 0 với mọi x ∈ (2; +∞)
⇔ 3x2 – 12mx – 6x + 12m + 5 ≥ 0 với mọi x ∈ (2; +∞)
\( \Leftrightarrow m \le \frac{{3{{\rm{x}}^2} - 6{\rm{x}} + 5}}{{12\left( {{\rm{x}} - 1} \right)}}\) với mọi x ∈ (2; +∞)
Xét hàm số \(g\left( {\rm{x}} \right) = \frac{{3{{\rm{x}}^2} - 6{\rm{x}} + 5}}{{12\left( {{\rm{x}} - 1} \right)}}\) với mọi x ∈ (2; +∞)
\(g'\left( {\rm{x}} \right) = \frac{{3{{\rm{x}}^2} - 6{\rm{x}} + 1}}{{12{{\left( {{\rm{x}} - 1} \right)}^2}}} > 0\) với mọi x ∈ (2; +∞)
Suy ra hàm số g(x) đồng biến trên (2; +∞)
Do đó m ≤ g(x) với mọi x ∈ (2; +∞)
Suy ra \(m \le g\left( 2 \right) \Leftrightarrow m \le \frac{5}{{12}}\)
Vì \(0 < m \le \frac{5}{{12}}\)
Do đó không có giá trị nguyên dương nào của m thỏa mãn bài toán
Vậy ta chọn đáp án C.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương trình dạng ax2 + bx + c = 0
• Denta: Dùng cho mọi trường hợp
Công thức denta: ∆ = b2 – 4ac
• Denta phẩy: Nên dùng khi hệ số b chia hết cho 2
Công thức denta phẩy: ∆’ = b’2 – ac trong đó b' = b2.
Câu 2
A. \[a\sqrt 3 \]
B. \(2{\rm{a}}\sqrt 5 \)
C. \[{\rm{a}}\sqrt 5 \]
D. \[{\rm{a}}\sqrt 2 \].
Lời giải
Đáp án đúng là: B
Gọi H, K là chân đường cao hạ từ A, D xuống BC
Khi đó tam giác ABH vuông tại H
Mà \(\widehat {ABC} = 45^\circ \)
Suy ra tam giác ABH vuông cân tại H
Do đó AH = BH = 2a
Vì hình thang ABCD cân
Nên AB = CD, \(\widehat {ABC} = \widehat {DCB}\), BD = AC
Xét tam giác ABH và tam giác DCK có
\(\widehat {AHB} = \widehat {DKC}\left( { = 90^\circ } \right)\)
AB = CD
\(\widehat {ABC} = \widehat {DCB}\)
Suy ra ∆ABH = ∆DCK (cạnh huyền – góc nhọn)
Do đó CK = BH = 2a
Ta có CH = AD + CK = 2a + 2a = 4a
Xét tam giac AHC vuông tại H có
AC2 = AH2 + CH2
Suy ra \[{\rm{AC = }}\sqrt {{{\left( {2{\rm{a}}} \right)}^2} + {{\left( {4{\rm{a}}} \right)}^2}} = 2{\rm{a}}\sqrt 5 \]
Ta có:
\(\left| {\overrightarrow {CB} - \overrightarrow {A{\rm{D}}} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB} + \overrightarrow {DA} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB} + \overrightarrow {DC} } \right| = \left| {\overrightarrow {DB} } \right| = AC = 2{\rm{a}}\sqrt 5 \)
Vậy ta chọn đáp án B.
Câu 3
A. a = 9b4
B. a = 9b
C. a = 6b
D. a = 9b2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. [3; 4].
B. [2; 4].
C. (2; 4).
D. (3; 4).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.