Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có:
D = x4 – 2x3 + 3x2 – 2x + 1
D = (x4 – 2x3 + x2) + (2x2 – 2x + 1)
D = (x2 – x)2 + 2(x2 – x) + 1
D = (x2 – x + 1)2
\[{\rm{D}} = {\left( {{x^2} - x + \frac{1}{4} + \frac{3}{4}} \right)^2}\]
\[{\rm{D}} = {\left[ {{{\left( {x - \frac{1}{2}} \right)}^2} + \frac{3}{4}} \right]^2}\]
Vì \[{\left( {x - \frac{1}{2}} \right)^2} \ge 0;\forall x\]
Nên \[{\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4};\forall x\]
Suy ra \[D \ge \frac{9}{{16}};\forall x\]
Vậy D đạt giá trị nhỏ nhất bẳng \(\frac{9}{{16}}\) khi \[{\rm{x}} = \frac{1}{2}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Với a, b là các số thực dương tùy ý thỏa mãn log3a – 2log9b = 2, mệnh đề nào dưới đây đúng?
Câu 2:
Cho hình thang cân ABCD, có đáy nhỏ và đường cao cùng bẳng 2a và \(\widehat {ABC} = 45^\circ \). Tính \(\left| {\overrightarrow {CB} - \overrightarrow {A{\rm{D}}} + \overrightarrow {AC} } \right|\).
Câu 5:
Tìm tập hợp các giá trị của tham số thực m để phương trình 6x + (3 – m) . 2x – m = 0 có nghiệm thuộc khoảng (0; 1).
Câu 6:
Tìm số nguyên a, b biết \(\frac{a}{7} - \frac{1}{2} = \frac{1}{{b + 3}}\).
về câu hỏi!