Tìm m để \( - 9 < \frac{{3{{\rm{x}}^2} + m{\rm{x}} - 6}}{{{x^2} - x + 1}} < 6\) nghiệm đúng với mọi x ∈ R.
Tìm m để \( - 9 < \frac{{3{{\rm{x}}^2} + m{\rm{x}} - 6}}{{{x^2} - x + 1}} < 6\) nghiệm đúng với mọi x ∈ R.
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có:
\( - 9 < \frac{{3{{\rm{x}}^2} + m{\rm{x}} - 6}}{{{x^2} - x + 1}} < 6\)
⇔ –9(x2 – x + 1) < 3x2 + mx – 6 < 6(x2 – x + 1) vì x2 – x + 1 > 0 với mọi x ∈ ℝ
⇔ –9x2 + 9x – 9 < 3x2 + mx – 6 < 6x2 – 6x + 6
⇔ –12x2 + 9x – 3 < mx < 3x2 – 6x + 12
\( \Leftrightarrow \left\{ \begin{array}{l}12{{\rm{x}}^2} + \left( {m - 9} \right)x + 3 > 0{\rm{ (1)}}\\3{{\rm{x}}^2} - \left( {m + 6} \right)x + 12 > 0{\rm{ (2)}}\end{array} \right.{\rm{ }}\)
Để \( - 9 < \frac{{3{{\rm{x}}^2} + m{\rm{x}} - 6}}{{{x^2} - x + 1}} < 6\) nghiệm đúng với mọi x ∈ ℝ
⇔ phương trình (1) và (2) nghiệm đúng với mọi x ∈ ℝ
\( \Leftrightarrow \left\{ \begin{array}{l}{\Delta _1} < 0\\{\Delta _2} < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - 9} \right)^2} - 144 < 0\\{\left( {m + 6} \right)^2} - 144 < 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 18m + 81 - 144 < 0\\{m^2} + 12m + 36 - 144 < 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 18m - 63 < 0\\{m^2} + 12m - 108 < 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l} - 3 < m < 21\\ - 18 < m < 6\end{array} \right. \Leftrightarrow - 3 < m < 6\)
Vậy ta chọn đáp án A.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Với a, b > 0 ta có
log3a – 2log9b = 2
⇔ log3a – log3b = 2
\( \Leftrightarrow {\log _3}\frac{a}{b} = 2\)\( \Leftrightarrow \frac{a}{b} = 9\)
⇔ a = 9b
Vậy ta chọn đáp án B.
Lời giải
Phương trình dạng ax2 + bx + c = 0
• Denta: Dùng cho mọi trường hợp
Công thức denta: ∆ = b2 – 4ac
• Denta phẩy: Nên dùng khi hệ số b chia hết cho 2
Công thức denta phẩy: ∆’ = b’2 – ac trong đó b' = b2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.