Câu hỏi:

12/07/2024 1,341

Định m để bất phương trình (1 – m)x2 + 2mx + m − 6 ≥ 0  có nghiệm là một đoạn trên trục số có độ dài bằng 1.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Để bất phương trình có nghiệm trên 1 đoạn thì f(x) = (1 – m)x2 + 2mx + m – 6 phải là tam thức bậc hai có hai nghiệm phân biệt x1; x2 và hệ số a = 1 – m < 0

\( \Leftrightarrow \left\{ \begin{array}{l}m > 1\\\Delta > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 1\\{m^2} - \left( {1 - m} \right)\left( {m - 6} \right) > 0\end{array} \right.\)

\( \Leftrightarrow m \in \left( {1;\frac{3}{2}} \right) \cup \left( {2; + \infty } \right)\)

Để độ dài khoảng nghiệm bằng 1 thì |x1 – x2| = 1

(x1 – x2)2 = 1

(x1 + x2)2 – 4x1x2 = 1

Áp dụng định lí Vi – ét ta có

\({x_1} + {x_2} = \frac{{2m}}{{m - 1}};{x_1}{x_2} = \frac{{m - 6}}{{1 - m}}\)

Khi đó \({\left( {\frac{{2m}}{{m - 1}}} \right)^2} - 4.\frac{{m - 6}}{{1 - m}} = 1\)

\( \Leftrightarrow {\left( {\frac{{2m}}{{m - 1}}} \right)^2} + 4.\frac{{\left( {m - 6} \right)\left( {m - 1} \right)}}{{{{\left( {m - 1} \right)}^2}}} = \frac{{{{\left( {m - 1} \right)}^2}}}{{{{\left( {m - 1} \right)}^2}}}\)

4m2 + 4(m – 6)(m – 1) = (m – 1)2

4m2 + 4(m2 – 7m + 6) = m2 – 2m + 1

4m2 + 4m2 – 28m + 24 = m2 – 2m + 1

7m2 – 26m + 23 = 0

\( \Leftrightarrow m = \frac{{13 \pm 2\sqrt 2 }}{7}\)

Vậy \(m = \frac{{13 \pm 2\sqrt 2 }}{7}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Với a, b > 0 ta có

log3a – 2log9b = 2

log3a – log3b = 2

\( \Leftrightarrow {\log _3}\frac{a}{b} = 2\)\( \Leftrightarrow \frac{a}{b} = 9\)

a = 9b

Vậy ta chọn đáp án B.

Lời giải

Đáp án đúng là: B

Cho hình thang cân ABCD, có đáy nhỏ và đường cao cùng bẳng 2a và góc ABC (ảnh 1)

Gọi H, K là chân đường cao hạ từ A, D xuống BC

Khi đó tam giác ABH vuông tại H

\(\widehat {ABC} = 45^\circ \)

Suy ra tam giác ABH vuông cân tại H

Do đó AH = BH = 2a

Vì hình thang ABCD cân

Nên AB = CD, \(\widehat {ABC} = \widehat {DCB}\), BD = AC

Xét tam giác ABH và tam giác DCK có

\(\widehat {AHB} = \widehat {DKC}\left( { = 90^\circ } \right)\)

AB = CD

\(\widehat {ABC} = \widehat {DCB}\)

Suy ra ∆ABH = ∆DCK (cạnh huyền – góc nhọn)

Do đó CK = BH = 2a

Ta có CH = AD + CK = 2a + 2a = 4a

Xét tam giac AHC vuông tại H có

AC2 = AH2 + CH2

Suy ra \[{\rm{AC = }}\sqrt {{{\left( {2{\rm{a}}} \right)}^2} + {{\left( {4{\rm{a}}} \right)}^2}} = 2{\rm{a}}\sqrt 5 \]

Ta có:

\(\left| {\overrightarrow {CB} - \overrightarrow {A{\rm{D}}} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB} + \overrightarrow {DA} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB} + \overrightarrow {DC} } \right| = \left| {\overrightarrow {DB} } \right| = AC = 2{\rm{a}}\sqrt 5 \)

Vậy ta chọn đáp án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho a, b là hai số thực dương tùy ý và b ≠ 1. Tìm kết luận đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay