Định m để bất phương trình (1 – m)x2 + 2mx + m − 6 ≥ 0 có nghiệm là một đoạn trên trục số có độ dài bằng 1.
Định m để bất phương trình (1 – m)x2 + 2mx + m − 6 ≥ 0 có nghiệm là một đoạn trên trục số có độ dài bằng 1.
Quảng cáo
Trả lời:
Để bất phương trình có nghiệm trên 1 đoạn thì f(x) = (1 – m)x2 + 2mx + m – 6 phải là tam thức bậc hai có hai nghiệm phân biệt x1; x2 và hệ số a = 1 – m < 0
\( \Leftrightarrow \left\{ \begin{array}{l}m > 1\\\Delta > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 1\\{m^2} - \left( {1 - m} \right)\left( {m - 6} \right) > 0\end{array} \right.\)
\( \Leftrightarrow m \in \left( {1;\frac{3}{2}} \right) \cup \left( {2; + \infty } \right)\)
Để độ dài khoảng nghiệm bằng 1 thì |x1 – x2| = 1
⇔ (x1 – x2)2 = 1
⇔ (x1 + x2)2 – 4x1x2 = 1
Áp dụng định lí Vi – ét ta có
\({x_1} + {x_2} = \frac{{2m}}{{m - 1}};{x_1}{x_2} = \frac{{m - 6}}{{1 - m}}\)
Khi đó \({\left( {\frac{{2m}}{{m - 1}}} \right)^2} - 4.\frac{{m - 6}}{{1 - m}} = 1\)
\( \Leftrightarrow {\left( {\frac{{2m}}{{m - 1}}} \right)^2} + 4.\frac{{\left( {m - 6} \right)\left( {m - 1} \right)}}{{{{\left( {m - 1} \right)}^2}}} = \frac{{{{\left( {m - 1} \right)}^2}}}{{{{\left( {m - 1} \right)}^2}}}\)
⇔ 4m2 + 4(m – 6)(m – 1) = (m – 1)2
⇔ 4m2 + 4(m2 – 7m + 6) = m2 – 2m + 1
⇔ 4m2 + 4m2 – 28m + 24 = m2 – 2m + 1
⇔ 7m2 – 26m + 23 = 0
\( \Leftrightarrow m = \frac{{13 \pm 2\sqrt 2 }}{7}\)
Vậy \(m = \frac{{13 \pm 2\sqrt 2 }}{7}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương trình dạng ax2 + bx + c = 0
• Denta: Dùng cho mọi trường hợp
Công thức denta: ∆ = b2 – 4ac
• Denta phẩy: Nên dùng khi hệ số b chia hết cho 2
Công thức denta phẩy: ∆’ = b’2 – ac trong đó b' = b2.
Câu 2
A. \[a\sqrt 3 \]
B. \(2{\rm{a}}\sqrt 5 \)
C. \[{\rm{a}}\sqrt 5 \]
D. \[{\rm{a}}\sqrt 2 \].
Lời giải
Đáp án đúng là: B
Gọi H, K là chân đường cao hạ từ A, D xuống BC
Khi đó tam giác ABH vuông tại H
Mà \(\widehat {ABC} = 45^\circ \)
Suy ra tam giác ABH vuông cân tại H
Do đó AH = BH = 2a
Vì hình thang ABCD cân
Nên AB = CD, \(\widehat {ABC} = \widehat {DCB}\), BD = AC
Xét tam giác ABH và tam giác DCK có
\(\widehat {AHB} = \widehat {DKC}\left( { = 90^\circ } \right)\)
AB = CD
\(\widehat {ABC} = \widehat {DCB}\)
Suy ra ∆ABH = ∆DCK (cạnh huyền – góc nhọn)
Do đó CK = BH = 2a
Ta có CH = AD + CK = 2a + 2a = 4a
Xét tam giac AHC vuông tại H có
AC2 = AH2 + CH2
Suy ra \[{\rm{AC = }}\sqrt {{{\left( {2{\rm{a}}} \right)}^2} + {{\left( {4{\rm{a}}} \right)}^2}} = 2{\rm{a}}\sqrt 5 \]
Ta có:
\(\left| {\overrightarrow {CB} - \overrightarrow {A{\rm{D}}} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB} + \overrightarrow {DA} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB} + \overrightarrow {DC} } \right| = \left| {\overrightarrow {DB} } \right| = AC = 2{\rm{a}}\sqrt 5 \)
Vậy ta chọn đáp án B.
Câu 3
A. a = 9b4
B. a = 9b
C. a = 6b
D. a = 9b2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. [3; 4].
B. [2; 4].
C. (2; 4).
D. (3; 4).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.