Tập nghiệm của phương trình \({5^x}{.8^{\frac{{x - 1}}{x}}} = 500\) là
Tập nghiệm của phương trình \({5^x}{.8^{\frac{{x - 1}}{x}}} = 500\) là
A. \(\left[ \begin{array}{l}x = 3\\x = - {\log _5}2\end{array} \right.\);
B. \(\left[ \begin{array}{l}x = 3\\x = {\log _5}2\end{array} \right.\);
C. \(\left[ \begin{array}{l}x = 1\\x = - {\log _5}2\end{array} \right.\);
D. \(\left[ \begin{array}{l}x = 1\\x = {\log _5}2\end{array} \right.\).
Quảng cáo
Trả lời:

Đáp án đúng là: A
Ta có:
\({5^x}{.8^{\frac{{x - 1}}{x}}} = 500 = {2^2}{.5^3}\)
\( \Leftrightarrow {5^x}{.2^{\frac{{3\left( {x - 1} \right)}}{x}}} = {2^2}{.5^3}\)
\( \Leftrightarrow {2^{\frac{{3\left( {x - 1} \right)}}{x} - 2}} = {5^{x - 3}}\)
\( \Leftrightarrow {\log _2}{2^{\frac{{x - 3}}{x}}} = {\log _2}{5^{3 - x}}\)
\( \Leftrightarrow \frac{{x - 3}}{x} = \left( {3 - x} \right){\log _2}5\)
\( \Leftrightarrow \left( {x - 3} \right)\left( {\frac{1}{x} + {{\log }_2}5} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}x - 3 = 0\\\frac{1}{x} + {\log _2}5 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = \frac{{ - 1}}{{{{\log }_2}5}} = - {\log _5}2\end{array} \right.\).
Vậy phương trình đã cho có nghiệm là x = 3 hoặc x = −log52.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(\frac{{a\sqrt 3 }}{4}\);
B. \(\frac{{a\sqrt 2 }}{4}\);
C. \(\frac{{a\sqrt 5 }}{4}\);
D. \(\frac{{a\sqrt 3 }}{3}\).
Lời giải
Đáp án đúng là: A

Gọi H là trung điểm của BC. Khi đó SH ⊥ (ABCD).
Do tam giác ABC vuông cân tại A nên AH ⊥ BC và \(AH = \frac{a}{2}\).
Dựng điểm D sao cho ABCD là hình bình hành.
Khi đó d(SA, BC) = d(BC, (SAD)) = d(H, (SAD)).
Kẻ HI ⊥ SA.
Khi đó d(H, (SAD)) = HI \( = \frac{{\frac{{a\sqrt 3 }}{2}.\frac{a}{2}}}{a} = \frac{{a\sqrt 3 }}{4}\).
Câu 2
A. −259;
B. 68;
C. 0;
D. −4.
Lời giải
Đáp án đúng là: D
TXĐ: D = ℝ
Hàm số liên tục trên đoạn [0; 4]
Ta có: y¢ = 3x2 + 4x – 7 = 0
\( \Leftrightarrow \left[ \begin{array}{l}x = 1 \in [0;4]\\x = - \frac{7}{3} \notin [0;4]\end{array} \right.\)
Khi đó y(0) = 0; y(1) = −4; y(4) = 68
Vậy giá trị nhỏ nhất cần tìm là: −4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[{\log _5}\left( {\frac{{1 - \sqrt {21} }}{2}} \right)\];
B. \({\log _5}\left( {\frac{{1 + \sqrt {21} }}{2}} \right)\);
C. 5;
D. \(5\log \left( {\frac{{1 + \sqrt {21} }}{2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.