Câu hỏi:
18/08/2023 6,518Quảng cáo
Trả lời:
Đáp án đúng là: D
TXĐ: D = ℝ
Hàm số liên tục trên đoạn [0; 4]
Ta có: y¢ = 3x2 + 4x – 7 = 0
\( \Leftrightarrow \left[ \begin{array}{l}x = 1 \in [0;4]\\x = - \frac{7}{3} \notin [0;4]\end{array} \right.\)
Khi đó y(0) = 0; y(1) = −4; y(4) = 68
Vậy giá trị nhỏ nhất cần tìm là: −4.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A

Gọi H là trung điểm của BC. Khi đó SH ⊥ (ABCD).
Do tam giác ABC vuông cân tại A nên AH ⊥ BC và \(AH = \frac{a}{2}\).
Dựng điểm D sao cho ABCD là hình bình hành.
Khi đó d(SA, BC) = d(BC, (SAD)) = d(H, (SAD)).
Kẻ HI ⊥ SA.
Khi đó d(H, (SAD)) = HI \( = \frac{{\frac{{a\sqrt 3 }}{2}.\frac{a}{2}}}{a} = \frac{{a\sqrt 3 }}{4}\).
Lời giải
Đáp án đúng là: B
Ta có:
5x + 251-x = 6
⇔ 5x + 52(1-x) = 6
\( \Leftrightarrow {5^x} + \frac{{{5^2}}}{{{5^{2x}}}} = 6\)
⇔ 53x + 25 = 6.52x
Đặt t = 5x > 0
Khi đó phương trình trở thành:
t3 – 6t2 + 25 = 0
⇔ (t – 5)(t2 – t – 5) = 0
\( \Leftrightarrow \left[ \begin{array}{l}t = 5\\t = \frac{{1 + \sqrt {21} }}{2}\\t = \frac{{1 - \sqrt {21} }}{2}\end{array} \right.\)
Vì t > 0 nên ta có: \(\left[ \begin{array}{l}t = 5\\t = \frac{{1 + \sqrt {21} }}{2}\end{array} \right.\)
Với t = 5 ⇒ 5x = 5 ⇔ x = 1
Với \(t = \frac{{1 + \sqrt {21} }}{2} \Rightarrow {5^x} = \frac{{1 + \sqrt {21} }}{2} \Leftrightarrow x = {\log _5}\left( {\frac{{1 + \sqrt {21} }}{2}} \right)\)
Vậy tích các nghiệm của phương trình bằng: \({\log _5}\left( {\frac{{1 + \sqrt {21} }}{2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.